{"title":"Reality determining subgraphs and strongly real modules","authors":"Matheus Brito , Adriano Moura , Clayton Silva","doi":"10.1016/j.jalgebra.2025.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of pseudo <em>q</em>-factorization graphs was recently introduced by the last two authors as a combinatorial language which is suited for capturing certain properties of Drinfeld polynomials. Using certain known representation theoretic facts about tensor products of Kirillov Reshetikhin modules and <em>q</em>-characters, combined with special topological/ combinatorial properties of the underlying <em>q</em>-factorization graphs, the last two authors showed that, for algebras of type <em>A</em>, modules associated to totally ordered graphs are prime, while those associated to trees are real. In this paper, we extend the latter result. We introduce the notions of strongly real modules and that of trees of modules satisfying certain properties. In particular, we can consider snake trees, i.e., trees formed from snake modules. Among other results, we show that a certain class of such generalized trees, which properly contains the snake trees, give rise to strongly real modules.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"688 ","pages":"Pages 244-283"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005599","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of pseudo q-factorization graphs was recently introduced by the last two authors as a combinatorial language which is suited for capturing certain properties of Drinfeld polynomials. Using certain known representation theoretic facts about tensor products of Kirillov Reshetikhin modules and q-characters, combined with special topological/ combinatorial properties of the underlying q-factorization graphs, the last two authors showed that, for algebras of type A, modules associated to totally ordered graphs are prime, while those associated to trees are real. In this paper, we extend the latter result. We introduce the notions of strongly real modules and that of trees of modules satisfying certain properties. In particular, we can consider snake trees, i.e., trees formed from snake modules. Among other results, we show that a certain class of such generalized trees, which properly contains the snake trees, give rise to strongly real modules.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.