Cross-positive linear maps, positive polynomials and sums of squares

IF 0.8 2区 数学 Q2 MATHEMATICS
Igor Klep , Klemen Šivic , Aljaž Zalar
{"title":"Cross-positive linear maps, positive polynomials and sums of squares","authors":"Igor Klep ,&nbsp;Klemen Šivic ,&nbsp;Aljaž Zalar","doi":"10.1016/j.jalgebra.2025.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>A ⁎-linear map Φ between matrix spaces is cross-positive if it is positive on orthogonal pairs <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> of positive semidefinite matrices in the sense that <span><math><mo>〈</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>〉</mo><mo>:</mo><mo>=</mo><mi>tr</mi><mo>(</mo><mi>U</mi><mi>V</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> implies <span><math><mo>〈</mo><mi>Φ</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>〉</mo><mo>≥</mo><mn>0</mn></math></span>, and is completely cross-positive if all its ampliations <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊗</mo><mi>Φ</mi></math></span> are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance.</div><div>To each Φ as above a bihomogeneous form is associated by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>Φ</mi><mo>(</mo><mi>x</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo><mi>y</mi></math></span>. Then Φ is cross-positive if and only if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is nonnegative on the variety of pairs of orthogonal vectors <span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>y</mi><mo>=</mo><mn>0</mn><mo>}</mo></math></span>. Moreover, Φ is shown to be completely cross-positive if and only if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is a sum of squares modulo the principal ideal <span><math><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>y</mi><mo>)</mo></math></span>. These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps Φ mapping between <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"688 ","pages":"Pages 189-243"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005526","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A ⁎-linear map Φ between matrix spaces is cross-positive if it is positive on orthogonal pairs (U,V) of positive semidefinite matrices in the sense that U,V:=tr(UV)=0 implies Φ(U),V0, and is completely cross-positive if all its ampliations InΦ are cross-positive. (Completely) cross-positive maps arise in the theory of operator semigroups, where they are sometimes called exponentially-positive maps, and are also important in the theory of affine processes on symmetric cones in mathematical finance.
To each Φ as above a bihomogeneous form is associated by pΦ(x,y)=yTΦ(xxT)y. Then Φ is cross-positive if and only if pΦ is nonnegative on the variety of pairs of orthogonal vectors {(x,y)|xTy=0}. Moreover, Φ is shown to be completely cross-positive if and only if pΦ is a sum of squares modulo the principal ideal (xTy). These observations bring the study of cross-positive maps into the powerful setting of real algebraic geometry. Here this interplay is exploited to prove quantitative bounds on the fraction of cross-positive maps that are completely cross-positive. Detailed results about cross-positive maps Φ mapping between 3×3 matrices are given. Finally, an algorithm to produce cross-positive maps that are not completely cross-positive is presented.
交叉正线性映射,正多项式和平方和
如果矩阵空间间的一个 -线性映射Φ在正半定矩阵的正交对(U,V)上是正的,即< U,V >:=tr(UV)=0意味着< Φ(U),V >≥0,则该映射Φ是交叉正的;如果它的所有放大in⊗Φ都是交叉正的,则该映射Φ是完全交叉正的。(完全)交叉正映射出现在算子半群理论中,它们有时被称为指数正映射,并且在数学金融中对称锥上的仿射过程理论中也很重要。如上所述,对于每个Φ,一个双齐次形式与pΦ(x,y)=yTΦ(xxT)y相关联。那么Φ是交叉正的当且仅当pΦ对正交向量{(x,y)|xTy=0}的个数是非负的。此外,Φ被证明是完全交叉正的当且仅当pΦ是对主理想(xTy)模的平方和。这些观察结果将交叉正映射的研究带入了真实代数几何的强大背景中。在这里,这种相互作用被用来证明完全交叉正的交叉正映射的分数的定量界限。给出了关于3×3矩阵间的交叉正映射Φ映射的详细结果。最后,提出了一种生成非完全交叉正的交叉正映射的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信