Ashis Saha, Anirban Roy Chowdhury, Sunandan Gangopadhyay
{"title":"A holographic realization of correlation and mutual information","authors":"Ashis Saha, Anirban Roy Chowdhury, Sunandan Gangopadhyay","doi":"10.1016/j.physletb.2025.139933","DOIUrl":null,"url":null,"abstract":"<div><div>The status of the inequality existing between mutual information and (normalized) thermal two-point connected correlation function, namely, <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>A</mi><mo>:</mo><mi>B</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><msup><mrow><mo>(</mo><msub><mrow><mo>〈</mo><mrow><msub><mi>O</mi><mi>A</mi></msub><msub><mi>O</mi><mi>B</mi></msub></mrow><mo>〉</mo></mrow><mi>β</mi></msub><mo>−</mo><msub><mrow><mo>〈</mo><msub><mi>O</mi><mi>A</mi></msub><mo>〉</mo></mrow><mi>β</mi></msub><msub><mrow><mo>〈</mo><msub><mi>O</mi><mi>B</mi></msub><mo>〉</mo></mrow><mi>β</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><msub><mrow><mo>〈</mo><msubsup><mi>O</mi><mrow><mi>A</mi></mrow><mn>2</mn></msubsup><mo>〉</mo></mrow><mi>β</mi></msub><msub><mrow><mo>〈</mo><msubsup><mi>O</mi><mrow><mi>B</mi></mrow><mn>2</mn></msubsup><mo>〉</mo></mrow><mi>β</mi></msub></mrow></mfrac></mrow></math></span> has been explicitly probed by using the gauge/gravity correspondence. In the holographic analysis, the geodesic approximation for heavy operators (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><mo>∼</mo><mi>m</mi><mi>R</mi></mrow></math></span>) has been used. We observe that the study leads to some non-trivial insights depending upon the method of calculating the thermal object <span><math><msub><mrow><mo>〈</mo><msup><mi>O</mi><mn>2</mn></msup><mo>〉</mo></mrow><mi>β</mi></msub></math></span>. For a particular computed result of <span><math><msub><mrow><mo>〈</mo><msup><mi>O</mi><mn>2</mn></msup><mo>〉</mo></mrow><mi>β</mi></msub></math></span> we propose that all of the existing quantum mechanical dependencies (correlations) and classical correlations between the subsystems <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> vanishes at two different separation lengths, namely, <span><math><mrow><mi>s</mi><mi>T</mi><mo>|</mo><mi>c</mi></mrow></math></span> and <span><math><msub><mrow><mi>s</mi><mi>T</mi><mo>|</mo></mrow><mi>I</mi></msub></math></span> where <span><math><mrow><msub><mrow><mi>s</mi><mi>T</mi><mo>|</mo></mrow><mi>I</mi></msub><msub><mrow><mo>></mo><mi>s</mi><mi>T</mi><mo>|</mo></mrow><mi>c</mi></msub></mrow></math></span>.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"870 ","pages":"Article 139933"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325006914","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The status of the inequality existing between mutual information and (normalized) thermal two-point connected correlation function, namely, has been explicitly probed by using the gauge/gravity correspondence. In the holographic analysis, the geodesic approximation for heavy operators () has been used. We observe that the study leads to some non-trivial insights depending upon the method of calculating the thermal object . For a particular computed result of we propose that all of the existing quantum mechanical dependencies (correlations) and classical correlations between the subsystems and vanishes at two different separation lengths, namely, and where .
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.