{"title":"Singularities of solutions to the non-Newtonian polytropic filtration","authors":"Meiling Zhou, Liangwei Wang, Jingxue Yin, Can Lu","doi":"10.1016/j.nonrwa.2025.104518","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the non-Newtonian polytropic filtration equation <span><math><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>−</mo><mi>div</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mrow><mi>∇</mi><msup><mi>u</mi><mi>m</mi></msup></mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><msup><mi>u</mi><mi>m</mi></msup><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> with a positive initial data on a smooth bounded domain <span><math><mrow><mstyle><mi>Ω</mi></mstyle><mo>⊂</mo><msup><mi>R</mi><mi>n</mi></msup></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>m</mi></mfrac></mrow></math></span>, and in particular <span><math><mrow><mi>p</mi><mo><</mo><mfrac><mrow><mi>n</mi><mrow><mo>(</mo><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>m</mi><mi>n</mi></mrow></mfrac></mrow></math></span>. To investigate the regularity of solutions to the Dirichlet problem for this equation when the initial data exhibit a singularity of the form <span><math><mrow><msub><mi>u</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mi>A</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>∈</mo><mstyle><mi>Ω</mi></mstyle><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, we introduce a linear diffusion term in the regularization process. This addition ensures that the equation remains uniformly parabolic, thereby satisfying both the maximum principle and the comparison principle. The desired results are obtained provided that the coefficient of this regularization term converges to zero in the norm of the appropriate function space. This paper shows that the behavior of the solution depends critically on the value of the exponent <span><math><mi>γ</mi></math></span> in the initial data, leading to the following distinct cases: finite-time boundedness, infinite-time boundedness, singular stabilization, and infinite-time blow-up.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"89 ","pages":"Article 104518"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825002007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the non-Newtonian polytropic filtration equation with a positive initial data on a smooth bounded domain for , where , , and in particular . To investigate the regularity of solutions to the Dirichlet problem for this equation when the initial data exhibit a singularity of the form for with and , we introduce a linear diffusion term in the regularization process. This addition ensures that the equation remains uniformly parabolic, thereby satisfying both the maximum principle and the comparison principle. The desired results are obtained provided that the coefficient of this regularization term converges to zero in the norm of the appropriate function space. This paper shows that the behavior of the solution depends critically on the value of the exponent in the initial data, leading to the following distinct cases: finite-time boundedness, infinite-time boundedness, singular stabilization, and infinite-time blow-up.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.