{"title":"Asymmetric-gate Mach–Zehnder interferometry in graphene: Multi-path conductance oscillations and visibility characteristics","authors":"Taegeun Song , Nojoon Myoung","doi":"10.1016/j.cap.2025.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene provides an excellent platform for investigating electron quantum interference due to its outstanding coherent properties. In the quantum Hall regime, Mach–Zehnder (MZ) electronic interferometers are realized using p–n junctions in graphene, where electron interference is highly protected against decoherence. In this work, we present a phenomenological framework for graphene-based MZ interferometry with asymmetric p–n junction configurations. We show that the enclosed interferometer area can be tuned by asymmetric gate potentials, and additional MZ pathways emerge in higher-filling-factor scenarios, e.g., <span><math><mrow><mo>(</mo><msub><mi>ν</mi><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>ν</mi><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mo>−</mo><mn>3</mn><mo>,</mo><mo>+</mo><mn>3</mn><mo>)</mo></mrow></math></span>. The resulting complicated beat oscillations in asymmetric-gate MZ interference are efficiently analyzed using a machine-learning-based Fourier transform, which yields improved peak-to-background ratios compared to conventional signal-processing techniques. Furthermore, we examine the impact of the asymmetric gate on the interference visibility, finding that interference visibility is enhanced under symmetric gate conditions.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 341-345"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001956","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene provides an excellent platform for investigating electron quantum interference due to its outstanding coherent properties. In the quantum Hall regime, Mach–Zehnder (MZ) electronic interferometers are realized using p–n junctions in graphene, where electron interference is highly protected against decoherence. In this work, we present a phenomenological framework for graphene-based MZ interferometry with asymmetric p–n junction configurations. We show that the enclosed interferometer area can be tuned by asymmetric gate potentials, and additional MZ pathways emerge in higher-filling-factor scenarios, e.g., . The resulting complicated beat oscillations in asymmetric-gate MZ interference are efficiently analyzed using a machine-learning-based Fourier transform, which yields improved peak-to-background ratios compared to conventional signal-processing techniques. Furthermore, we examine the impact of the asymmetric gate on the interference visibility, finding that interference visibility is enhanced under symmetric gate conditions.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.