{"title":"Quantum advantage and CSP complexity","authors":"Lorenzo Ciardo","doi":"10.1016/j.jctb.2025.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Information-processing tasks modelled by homomorphisms between relational structures can witness quantum advantage when entanglement is used as a computational resource. We prove that the occurrence of quantum advantage is determined by the same algebraic structure (known as the polymorphism minion) that captures the complexity of CSPs. We investigate the connection between the minion of quantum advantage and other known minions controlling CSP tractability and width. In this way, we make use of complexity results from the algebraic theory of CSPs to characterise the occurrence of quantum advantage in the case of graphs, and to obtain new necessary and sufficient conditions in the case of arbitrary relational structures.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"176 ","pages":"Pages 404-439"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000759","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Information-processing tasks modelled by homomorphisms between relational structures can witness quantum advantage when entanglement is used as a computational resource. We prove that the occurrence of quantum advantage is determined by the same algebraic structure (known as the polymorphism minion) that captures the complexity of CSPs. We investigate the connection between the minion of quantum advantage and other known minions controlling CSP tractability and width. In this way, we make use of complexity results from the algebraic theory of CSPs to characterise the occurrence of quantum advantage in the case of graphs, and to obtain new necessary and sufficient conditions in the case of arbitrary relational structures.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.