Resistivity distribution and donor properties of antimony-doped n-type Czochralski silicon ingots

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Rabin Basnet , Chirag Mule , Wei Han , Nannan Fu , Afsaneh Kashizadeh , P. Craig Taylor , Sumit Agarwal , Yichun Wang , Paul Stradins , Daniel Macdonald
{"title":"Resistivity distribution and donor properties of antimony-doped n-type Czochralski silicon ingots","authors":"Rabin Basnet ,&nbsp;Chirag Mule ,&nbsp;Wei Han ,&nbsp;Nannan Fu ,&nbsp;Afsaneh Kashizadeh ,&nbsp;P. Craig Taylor ,&nbsp;Sumit Agarwal ,&nbsp;Yichun Wang ,&nbsp;Paul Stradins ,&nbsp;Daniel Macdonald","doi":"10.1016/j.solmat.2025.114018","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate antimony (Sb)-doped Czochralski-grown silicon as an alternative <em>n</em>-type substrate for photovoltaic applications, and characterize their axial resistivity distribution, donor properties, and mechanical strength. We find that Sb-doped ingots can achieve a more uniform resistivity distribution along the axial direction compared to P-doped counterparts. Dopant concentration profiles in P-doped ingots can be accurately modelled using the standard Scheil's equation, accounting only for dopant segregation during solidification. In contrast, modelling Sb-doped ingots requires consideration of both dopant segregation and evaporation effects to fit the dopant distribution accurately. Using electron paramagnetic resonance spectroscopy at 9 K, we observe two hyperfine lines in P-doped samples, and six hyperfine lines for Sb<sup>121</sup> and eight for Sb<sup>123</sup> isotopes, with the number of hyperfine lines governed by the nuclear spins. We further identify two-atom Sb clustering in the Sb-doped wafers, confirmed through simulations of the additional weak electron paramagnetic resonance peaks. Finally, we find that 140 μm as-cut planar Sb-doped wafers exhibit slightly higher mechanical strength compared to P-doped wafers.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 114018"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825006191","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate antimony (Sb)-doped Czochralski-grown silicon as an alternative n-type substrate for photovoltaic applications, and characterize their axial resistivity distribution, donor properties, and mechanical strength. We find that Sb-doped ingots can achieve a more uniform resistivity distribution along the axial direction compared to P-doped counterparts. Dopant concentration profiles in P-doped ingots can be accurately modelled using the standard Scheil's equation, accounting only for dopant segregation during solidification. In contrast, modelling Sb-doped ingots requires consideration of both dopant segregation and evaporation effects to fit the dopant distribution accurately. Using electron paramagnetic resonance spectroscopy at 9 K, we observe two hyperfine lines in P-doped samples, and six hyperfine lines for Sb121 and eight for Sb123 isotopes, with the number of hyperfine lines governed by the nuclear spins. We further identify two-atom Sb clustering in the Sb-doped wafers, confirmed through simulations of the additional weak electron paramagnetic resonance peaks. Finally, we find that 140 μm as-cut planar Sb-doped wafers exhibit slightly higher mechanical strength compared to P-doped wafers.
掺锑n型奇克拉尔斯基硅锭的电阻率分布及施主性质
我们研究了锑(Sb)掺杂的czochralski生长硅作为光伏应用的替代n型衬底,并表征了它们的轴向电阻率分布、施主性质和机械强度。我们发现,与掺p的钢锭相比,掺sb的钢锭在轴向上的电阻率分布更加均匀。使用标准的Scheil方程可以精确地模拟p掺杂锭中的掺杂物浓度分布,只考虑凝固过程中的掺杂物偏析。相比之下,为准确拟合掺杂物的分布,需要同时考虑掺杂物的偏析和蒸发效应。在9 K下,利用电子顺磁共振谱技术,我们观察到p掺杂样品中有两条超细谱线,Sb121有六条超细谱线,Sb123有八条超细谱线,超细谱线的数量与核自旋有关。我们进一步确定了锑掺杂晶圆中的双原子Sb簇,并通过模拟附加的弱电子顺磁共振峰加以证实。最后,我们发现140 μm的平面掺杂sb晶圆比p掺杂晶圆具有稍高的机械强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信