Precisely Integrated Mesoporous Anode Enabling Fast Pseudocapacitive Sodium-Ion Storage

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuang Li, , , Jiecheng Chen, , , Xin Miao, , , Xu Wen, , , You Zhou, , , Bingxian Chu, , , Wendi Wang, , , Yanyan Yu, , , Ziyang Guo*, , and , Kun Lan*, 
{"title":"Precisely Integrated Mesoporous Anode Enabling Fast Pseudocapacitive Sodium-Ion Storage","authors":"Shuang Li,&nbsp;, ,&nbsp;Jiecheng Chen,&nbsp;, ,&nbsp;Xin Miao,&nbsp;, ,&nbsp;Xu Wen,&nbsp;, ,&nbsp;You Zhou,&nbsp;, ,&nbsp;Bingxian Chu,&nbsp;, ,&nbsp;Wendi Wang,&nbsp;, ,&nbsp;Yanyan Yu,&nbsp;, ,&nbsp;Ziyang Guo*,&nbsp;, and ,&nbsp;Kun Lan*,&nbsp;","doi":"10.1021/acscentsci.5c00616","DOIUrl":null,"url":null,"abstract":"<p >Sodium-ion batteries (SIBs) are considered potential alternatives to lithium-ion batteries (LIBs) due to the abundant resources and low sodium cost. The rational nanostructural design for anode materials plays a crucial role in SIBs. TiO<sub>2</sub>, as a common electrode material, suffers from the drawbacks of low specific surface area and poor conductivity. To overcome these limitations, we propose a strategy combining solvent evaporation-induced self-assembly and chemical oxidative polymerization to construct an ultrathin polypyrrole (PPy)-coated mesoporous TiO<sub>2</sub> microsphere (meso-TiO<sub>2</sub>@PPy) core–shell structure. The combination of the mesoporous structure and the conductive coating endows the micrometer-sized TiO<sub>2</sub> spheres with high specific surface area, excellent conductivity, and abundant sodium-ion diffusion pathways, leading to a dominant pseudocapacitance (94%) of total charge storage. Remarkably, such integration allows for a high reversible capacity of 160.6 mAh g<sup>–1</sup> at 1 A g<sup>–1</sup>, good rate performance, and stable cycling performance (capacity retention of 80.8% after 2000 cycles). Our research provides a pathway for the design of compositive anode materials for high-performance SIBs.</p><p >A type of integrated mesoporous TiO<sub>2</sub>−PPy composite is designed as an anode to guarantee high surface area, tap density, and conductivity for overall enhancement of pseudocapacitive Na<sup>+</sup> storage.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1892–1901"},"PeriodicalIF":10.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00616","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00616","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) are considered potential alternatives to lithium-ion batteries (LIBs) due to the abundant resources and low sodium cost. The rational nanostructural design for anode materials plays a crucial role in SIBs. TiO2, as a common electrode material, suffers from the drawbacks of low specific surface area and poor conductivity. To overcome these limitations, we propose a strategy combining solvent evaporation-induced self-assembly and chemical oxidative polymerization to construct an ultrathin polypyrrole (PPy)-coated mesoporous TiO2 microsphere (meso-TiO2@PPy) core–shell structure. The combination of the mesoporous structure and the conductive coating endows the micrometer-sized TiO2 spheres with high specific surface area, excellent conductivity, and abundant sodium-ion diffusion pathways, leading to a dominant pseudocapacitance (94%) of total charge storage. Remarkably, such integration allows for a high reversible capacity of 160.6 mAh g–1 at 1 A g–1, good rate performance, and stable cycling performance (capacity retention of 80.8% after 2000 cycles). Our research provides a pathway for the design of compositive anode materials for high-performance SIBs.

A type of integrated mesoporous TiO2−PPy composite is designed as an anode to guarantee high surface area, tap density, and conductivity for overall enhancement of pseudocapacitive Na+ storage.

精确集成介孔阳极实现快速伪电容性钠离子存储
钠离子电池因其丰富的资源和低廉的钠成本被认为是锂离子电池的潜在替代品。阳极材料的合理纳米结构设计在sib中起着关键作用。TiO2作为一种常用的电极材料,存在比表面积低、导电性差的缺点。为了克服这些限制,我们提出了一种结合溶剂蒸发诱导自组装和化学氧化聚合的策略,构建了超薄聚吡咯(PPy)包覆的介孔TiO2微球(meso-TiO2@PPy)核壳结构。介孔结构和导电涂层的结合,使得微米级TiO2球具有高比表面积、优异的导电性和丰富的钠离子扩散途径,从而在总电荷存储中占主导地位的赝电容(94%)。值得注意的是,这种集成允许在1 a g-1时具有160.6 mAh g-1的高可逆容量,良好的倍率性能和稳定的循环性能(2000次循环后容量保持率为80.8%)。我们的研究为高性能sib复合负极材料的设计提供了一条途径。设计了一种集成介孔TiO2−PPy复合材料作为阳极,以保证高表面积,轻接密度和电导率,从而全面增强假电容性Na+存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信