João Paulo L Franco Cairo,Thamy L R Corrêa,Wendy A Offen,Alison K Nairn,Julia Walton,Sean T Sweeney,Gideon J Davies,Paul H Walton
{"title":"Signal-strapping as a protein-sequence search method for the discovery of metalloproteins.","authors":"João Paulo L Franco Cairo,Thamy L R Corrêa,Wendy A Offen,Alison K Nairn,Julia Walton,Sean T Sweeney,Gideon J Davies,Paul H Walton","doi":"10.1038/s41467-025-64309-x","DOIUrl":null,"url":null,"abstract":"Metalloprotein discovery is often made post hoc, in which activity studies following protein isolation reveal a metal-ion dependence. Herein we take a different approach to finding metalloproteins, by building on the discovery of copper-containing lytic polysaccharide monooxygenases (LPMOs), which include an N-terminal histidine as part of their sequence. This residue acts as a natural chelator for transition metal ions, irrespective of the structure of the protein. We report the method of signal strapping, where sequences of N-terminal signal peptides artificially appended with a histidine residue at their C-terminus are used to bootstrap a proteomic search. These searches return sequences of proteins with an N-terminal histidine capable of coordinating a metal ion. We exemplify the approach by the discovery and characterisation of four classes of bacterial metalloproteins, including two that we denote as anglerases reflecting their potential to capture transition metal ions from the bacterial environment.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"72 1","pages":"9244"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64309-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metalloprotein discovery is often made post hoc, in which activity studies following protein isolation reveal a metal-ion dependence. Herein we take a different approach to finding metalloproteins, by building on the discovery of copper-containing lytic polysaccharide monooxygenases (LPMOs), which include an N-terminal histidine as part of their sequence. This residue acts as a natural chelator for transition metal ions, irrespective of the structure of the protein. We report the method of signal strapping, where sequences of N-terminal signal peptides artificially appended with a histidine residue at their C-terminus are used to bootstrap a proteomic search. These searches return sequences of proteins with an N-terminal histidine capable of coordinating a metal ion. We exemplify the approach by the discovery and characterisation of four classes of bacterial metalloproteins, including two that we denote as anglerases reflecting their potential to capture transition metal ions from the bacterial environment.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.