{"title":"High-performance graphene-based carbon fibres prepared at room temperature via domain folding.","authors":"Peng Li,Ziqiu Wang,Gangfeng Cai,Yingjie Zhao,Zihao Deng,Bo Wang,Zheng Li,Xin Ming,Weiwei Gao,Zhen Xu,Zhiping Xu,Yingjun Liu,Chao Gao","doi":"10.1038/s41563-025-02384-7","DOIUrl":null,"url":null,"abstract":"The assembly of strong graphene into high-performance macroscopic materials has attracted great interest and sustained attention. Thermal treatment has proven effective in improving the performance by restoring pristine graphene lattice from defective graphene oxide. However, the mechanical performance of graphene fibres remains inferior to that of single-layer pristine graphene, primarily due to assembly-induced defects such as microvoids that form during the folding process of two-dimensional sheets to fibre structures. Here we report the room-temperature fabrication of ultrastrong and stiff graphene fibres, which exhibit an average tensile strength of 5.19 GPa and Young's modulus of 529 GPa. We propose a domain-folding strategy to construct highly folded yet densely packed nanotexture, resulting in a tenfold reduction in microvoid volume. The stress distribution within the fibres is homogenized, leading to enhanced mechanical properties. These findings advance the fabrication of carbon fibres and other macroscopic materials assembled from two-dimensional nanosheets, enabling high material quality with reduced energy consumption.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"11 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02384-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The assembly of strong graphene into high-performance macroscopic materials has attracted great interest and sustained attention. Thermal treatment has proven effective in improving the performance by restoring pristine graphene lattice from defective graphene oxide. However, the mechanical performance of graphene fibres remains inferior to that of single-layer pristine graphene, primarily due to assembly-induced defects such as microvoids that form during the folding process of two-dimensional sheets to fibre structures. Here we report the room-temperature fabrication of ultrastrong and stiff graphene fibres, which exhibit an average tensile strength of 5.19 GPa and Young's modulus of 529 GPa. We propose a domain-folding strategy to construct highly folded yet densely packed nanotexture, resulting in a tenfold reduction in microvoid volume. The stress distribution within the fibres is homogenized, leading to enhanced mechanical properties. These findings advance the fabrication of carbon fibres and other macroscopic materials assembled from two-dimensional nanosheets, enabling high material quality with reduced energy consumption.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.