{"title":"Drawing boundaries between feasible and unfeasible zeolite intergrowths using high-throughput computational screening with synthesis validation.","authors":"Kota Oishi,Koki Muraoka,Satoko Toyama,Takeshi Iwata,Takehito Seki,Naoya Shibata,Kenta Iyoki,Toru Wakihara,Tatsuya Okubo,Akira Nakayama","doi":"10.1038/s41563-025-02377-6","DOIUrl":null,"url":null,"abstract":"Zeolites are a class of porous crystalline silicate-based materials with applications such as catalysis and separation. Zeolite intergrowths can have superior performance compared with conventional single-phase zeolites in these applications. This study develops a computational workflow to evaluate ~1.03 trillion atomistic structures to identify promising zeolite intergrowths through geometrical analysis and atomistic simulations. We find that interfacial energy is an excellent descriptor to distinguish hydrothermally synthesized zeolite intergrowths from the others, showing almost-perfect classification performance (area under the curve of 0.995). Computational screening workflow saves 100% of hydrothermally synthesized zeolite pairs and successfully rejects 99.3% of hypothetical pairs. Network analyses reveal that hypothetical pairs comparable to experimentally proven ones show substantial topological and chemical similarities, although such information is not directly used in the screening workflow. One of the hypothetical candidates that passed the criteria is experimentally realized by direct and seed-assisted hydrothermal syntheses, thereby broadening the applicable scope of zeolite intergrowths to zincosilicates with three and nine rings.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"2 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02377-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zeolites are a class of porous crystalline silicate-based materials with applications such as catalysis and separation. Zeolite intergrowths can have superior performance compared with conventional single-phase zeolites in these applications. This study develops a computational workflow to evaluate ~1.03 trillion atomistic structures to identify promising zeolite intergrowths through geometrical analysis and atomistic simulations. We find that interfacial energy is an excellent descriptor to distinguish hydrothermally synthesized zeolite intergrowths from the others, showing almost-perfect classification performance (area under the curve of 0.995). Computational screening workflow saves 100% of hydrothermally synthesized zeolite pairs and successfully rejects 99.3% of hypothetical pairs. Network analyses reveal that hypothetical pairs comparable to experimentally proven ones show substantial topological and chemical similarities, although such information is not directly used in the screening workflow. One of the hypothetical candidates that passed the criteria is experimentally realized by direct and seed-assisted hydrothermal syntheses, thereby broadening the applicable scope of zeolite intergrowths to zincosilicates with three and nine rings.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.