Yuan Gao,Wenzheng Shi,Stephen J Klawa,Margaret L Daly,Edward T Samulski,Ehssan Nazockdast,Ronit Freeman
{"title":"Reversible metamorphosis of hierarchical DNA-inorganic crystals.","authors":"Yuan Gao,Wenzheng Shi,Stephen J Klawa,Margaret L Daly,Edward T Samulski,Ehssan Nazockdast,Ronit Freeman","doi":"10.1038/s41565-025-02026-8","DOIUrl":null,"url":null,"abstract":"Living systems transform their shapes via reversible formation of macromolecular structural complexes, leading to deformations at localized sites. Here we report DNA-inorganic flower-shaped crystals with inscribed deformation modes that enable flowers to shrink and bend reversibly. Template-independent DNA polymerization of pH-responsive and inert blocks tune the hierarchical assembly and spatial localization of DNA within flowers. Experiments and simulations demonstrate that reversible, pH-triggered folding of intraflower DNA strands drives reconfiguration of flowers. By contrast, the subflower localization of these contractile DNA motifs dictates the mode of shape change. As microscale flowers close and open, their nanoscale crystal organization changes reversibly, suggesting that mechanical metamorphosis of flowers is transduced across multiple organizational length scales. The adaptability of flowers to environmental changes activates cascaded biocatalytic reactions and reveals gel-encrypted information. Further variation of the DNA polymer sequence, its subcrystal localization and its reversible folding advances a new class of organic-inorganic shape-shifters.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"66 1","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-02026-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Living systems transform their shapes via reversible formation of macromolecular structural complexes, leading to deformations at localized sites. Here we report DNA-inorganic flower-shaped crystals with inscribed deformation modes that enable flowers to shrink and bend reversibly. Template-independent DNA polymerization of pH-responsive and inert blocks tune the hierarchical assembly and spatial localization of DNA within flowers. Experiments and simulations demonstrate that reversible, pH-triggered folding of intraflower DNA strands drives reconfiguration of flowers. By contrast, the subflower localization of these contractile DNA motifs dictates the mode of shape change. As microscale flowers close and open, their nanoscale crystal organization changes reversibly, suggesting that mechanical metamorphosis of flowers is transduced across multiple organizational length scales. The adaptability of flowers to environmental changes activates cascaded biocatalytic reactions and reveals gel-encrypted information. Further variation of the DNA polymer sequence, its subcrystal localization and its reversible folding advances a new class of organic-inorganic shape-shifters.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.