Thermo-Mechanically Driven Hierarchical Evolution in Polyurethane Elastomers Subjected to Compression Fatigue.

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Min Wang,Yushu Tian,Jihang Yu,Jiadong Wang,Guangzhi Jin,Xuan Qin,Yonglai Lu
{"title":"Thermo-Mechanically Driven Hierarchical Evolution in Polyurethane Elastomers Subjected to Compression Fatigue.","authors":"Min Wang,Yushu Tian,Jihang Yu,Jiadong Wang,Guangzhi Jin,Xuan Qin,Yonglai Lu","doi":"10.1021/acsami.5c15391","DOIUrl":null,"url":null,"abstract":"Polyurethane elastomer (PUE) excels in demanding applications due to its outstanding mechanical properties and environmental tolerance. Under compressive fatigue, viscoelastic dissipation induces significant heat accumulation, driving complex thermo-mechanical coupling and microstructural evolution that ultimately leads to failure. However, the dynamic response of PUE's hierarchical structure under such conditions remains elusive. To address this, we designed PUEs with low (LP) and high (HP) degrees of microphase separation. Through synchronized temperature-field monitoring and multiscale characterization, we deciphered the thermo-mechanically driven hierarchical structural evolution under cyclic compression. Key findings reveal that LP suffers severe early-stage heat buildup, promoting hard segment rearrangement into disordered domains. Subsequently, spherulites deform into ellipsoids, fragment, and finally melt, causing structural collapse and a high compression set (17.2%). In contrast, HP's well-ordered hard-segment network effectively distributes stress via lamellar reorientation, followed by progressive spherulite fragmentation. This mechanism preserves structural integrity, resulting in a superior fatigue durability and a low compression set (6.2%). This study unveils the thermo-mechanical evolution pathways of PUE's hierarchy for the first time, establishing a fundamental structure-property relationship to guide the design of high-fatigue-resistance elastomers.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"211 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c15391","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyurethane elastomer (PUE) excels in demanding applications due to its outstanding mechanical properties and environmental tolerance. Under compressive fatigue, viscoelastic dissipation induces significant heat accumulation, driving complex thermo-mechanical coupling and microstructural evolution that ultimately leads to failure. However, the dynamic response of PUE's hierarchical structure under such conditions remains elusive. To address this, we designed PUEs with low (LP) and high (HP) degrees of microphase separation. Through synchronized temperature-field monitoring and multiscale characterization, we deciphered the thermo-mechanically driven hierarchical structural evolution under cyclic compression. Key findings reveal that LP suffers severe early-stage heat buildup, promoting hard segment rearrangement into disordered domains. Subsequently, spherulites deform into ellipsoids, fragment, and finally melt, causing structural collapse and a high compression set (17.2%). In contrast, HP's well-ordered hard-segment network effectively distributes stress via lamellar reorientation, followed by progressive spherulite fragmentation. This mechanism preserves structural integrity, resulting in a superior fatigue durability and a low compression set (6.2%). This study unveils the thermo-mechanical evolution pathways of PUE's hierarchy for the first time, establishing a fundamental structure-property relationship to guide the design of high-fatigue-resistance elastomers.
压缩疲劳下聚氨酯弹性体的热机械驱动分层演化。
聚氨酯弹性体(PUE)因其优异的机械性能和环境耐受性而在苛刻的应用中表现优异。在压缩疲劳条件下,粘弹性耗散引起大量热积累,驱动复杂的热-力耦合和微观组织演化,最终导致材料失效。然而,PUE的层次结构在这种条件下的动态响应仍然是难以捉摸的。为了解决这个问题,我们设计了低(LP)和高(HP)微相分离度的pue。通过同步温度场监测和多尺度表征,我们破译了循环压缩下热机械驱动的分层结构演化。主要研究结果表明,LP早期存在严重的热积累,促进硬段重排到无序结构域。随后,球晶变形为椭球体,破碎,最终熔化,造成结构崩塌和高压缩集(17.2%)。相比之下,HP的有序硬段网络通过层状重定向有效地分配应力,随后是渐进式球晶碎裂。这种机制保持了结构的完整性,产生了优异的疲劳耐久性和低压缩集(6.2%)。本研究首次揭示了PUE层次结构的热-力学演化路径,建立了基本的结构-性能关系,指导高抗疲劳弹性体的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信