{"title":"From retinotopic to ordinal coding: Dissecting the cortical stages of visual word recognition.","authors":"Aakash Agrawal,Stanislas Dehaene","doi":"10.1073/pnas.2507291122","DOIUrl":null,"url":null,"abstract":"Fluent reading requires the brain to precisely encode the positions of letters within words, distinguishing for instance FORM and FROM across variations in size, position, and font. Early visual areas, however, are known to encode retinotopic positions, and how these representations get transformed into a position-invariant neural code remains unclear. Building upon a computational model of reading, we used 7T functional MRI and magnetoencephalography (MEG) to reveal a cortical hierarchy in which early visual areas (V1-V4) predominantly encode retinotopic information, whereas higher-level regions, including the visual word form area, transition to an ordinal letter-position code. MEG analyses confirm that retinotopic encoding emerges early (60 to 200 ms), followed by a shift toward ordinal representations in later time windows (220 to 450 ms). Despite this transition, word position remained a dominant factor across all time points, suggesting a concurrent coding of both retinotopic and abstract positional information. These findings uncover the spatiotemporal dynamics by which the human brain transforms visual input into structured prelexical representations, shedding light on the cortical stages of reading and their developmental and clinical implications.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"19 1","pages":"e2507291122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2507291122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fluent reading requires the brain to precisely encode the positions of letters within words, distinguishing for instance FORM and FROM across variations in size, position, and font. Early visual areas, however, are known to encode retinotopic positions, and how these representations get transformed into a position-invariant neural code remains unclear. Building upon a computational model of reading, we used 7T functional MRI and magnetoencephalography (MEG) to reveal a cortical hierarchy in which early visual areas (V1-V4) predominantly encode retinotopic information, whereas higher-level regions, including the visual word form area, transition to an ordinal letter-position code. MEG analyses confirm that retinotopic encoding emerges early (60 to 200 ms), followed by a shift toward ordinal representations in later time windows (220 to 450 ms). Despite this transition, word position remained a dominant factor across all time points, suggesting a concurrent coding of both retinotopic and abstract positional information. These findings uncover the spatiotemporal dynamics by which the human brain transforms visual input into structured prelexical representations, shedding light on the cortical stages of reading and their developmental and clinical implications.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.