Zimeng He,Li Ding,Shaofei Li,Xing Xie,Shikun Hou,Jun He,Jian-Tao Wang,Zongwen Liu,Yanping Liu
{"title":"High-Performance Polarization-Sensitive Photodetector Based on ReS2/MoWSe2 van der Waals Heterostructure.","authors":"Zimeng He,Li Ding,Shaofei Li,Xing Xie,Shikun Hou,Jun He,Jian-Tao Wang,Zongwen Liu,Yanping Liu","doi":"10.1021/acsami.5c16945","DOIUrl":null,"url":null,"abstract":"Anisotropic two-dimensional (2D) materials offer a compelling platform for polarized light detection owing to their intrinsic polarization-sensitive optoelectronic responses. However, devices based on single materials often suffer from limited responsivity, narrow spectral coverage, and elevated noise levels. Here we report a high-performance, polarization-sensitive photodetector based on a van der Waals heterostructure composed of anisotropic ReS2 and a ternary MoWSe2 alloy. This design couples the polarization-dependent optical response of ReS2 with the low-defect and highly efficient absorption of MoWSe2, achieving a markedly high detectivity of 3.78 × 1014 Jones and a noticeable polarization ratio of 11.3 under zero or small negative bias. The built-in electric field of the junction effectively suppresses dark current and separates photogenerated carriers rapidly, making the device capable of broadband detection from the visible (405 nm) to near-infrared (1064 nm) spectrum. Under forward bias, the device transitions to a photoconductive regime, achieving a responsivity of 23.22 A/W. These findings highlight the potential of ReS2/MoWSe2 heterostructures as a versatile and scalable platform for broadband, low-noise, and polarization-resolved photodetection, offering a scalable route toward advanced optoelectronic technologies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"11 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c16945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anisotropic two-dimensional (2D) materials offer a compelling platform for polarized light detection owing to their intrinsic polarization-sensitive optoelectronic responses. However, devices based on single materials often suffer from limited responsivity, narrow spectral coverage, and elevated noise levels. Here we report a high-performance, polarization-sensitive photodetector based on a van der Waals heterostructure composed of anisotropic ReS2 and a ternary MoWSe2 alloy. This design couples the polarization-dependent optical response of ReS2 with the low-defect and highly efficient absorption of MoWSe2, achieving a markedly high detectivity of 3.78 × 1014 Jones and a noticeable polarization ratio of 11.3 under zero or small negative bias. The built-in electric field of the junction effectively suppresses dark current and separates photogenerated carriers rapidly, making the device capable of broadband detection from the visible (405 nm) to near-infrared (1064 nm) spectrum. Under forward bias, the device transitions to a photoconductive regime, achieving a responsivity of 23.22 A/W. These findings highlight the potential of ReS2/MoWSe2 heterostructures as a versatile and scalable platform for broadband, low-noise, and polarization-resolved photodetection, offering a scalable route toward advanced optoelectronic technologies.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.