Patricia Bravo,Eleonora Diamanti,Mostafa M Hamed,Lorenzo Bizzarri,Natalie Wiedemar,Armin Passecker,Nicolas M B Brancucci,Anna Albisetti,Christin Gumpp,Boris Illarionov,Markus Fischer,Matthias Witschel,Tobias Schehl,Hannes Hahne,Pascal Mäser,Matthias Rottmann,Anna K H Hirsch
{"title":"A Novel Antimalarial Agent that Inhibits Protein Synthesis in Plasmodium falciparum.","authors":"Patricia Bravo,Eleonora Diamanti,Mostafa M Hamed,Lorenzo Bizzarri,Natalie Wiedemar,Armin Passecker,Nicolas M B Brancucci,Anna Albisetti,Christin Gumpp,Boris Illarionov,Markus Fischer,Matthias Witschel,Tobias Schehl,Hannes Hahne,Pascal Mäser,Matthias Rottmann,Anna K H Hirsch","doi":"10.1002/anie.202514085","DOIUrl":null,"url":null,"abstract":"The emergence of drug resistance to nearly all antimalarials following their rollout underscores the need for novel chemotypes with novel modes of action to replenish the antimalarial drug-development pipeline. We identified a novel class of compounds in the antimalarial armory. Compound 31, characterized by a 2-hydroxyphenyl benzamide scaffold, displays potent activity against blood-stage and mature sexual stages of Plasmodium falciparum and no toxicity in human cells. Resistance selection studies with 31 identified a previously unknown point mutation in the P. falciparum multidrug-resistance protein 1 (pfmdr1) gene, for which we confirmed causality by CRISPR/Cas9-based gene editing as the primary mediator of resistance. No cross-resistance toward first-line antimalarials was identified in compound 31-resistant parasites. Proteomics studies indicated that the primary mode of action of 31 is through direct binding to cytosolic ribosomal subunits, thereby inhibiting protein synthesis in the parasite. Taken together, compound 31 is a promising starting point for the development of a next-generation antimalarial.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":"e202514085"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202514085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of drug resistance to nearly all antimalarials following their rollout underscores the need for novel chemotypes with novel modes of action to replenish the antimalarial drug-development pipeline. We identified a novel class of compounds in the antimalarial armory. Compound 31, characterized by a 2-hydroxyphenyl benzamide scaffold, displays potent activity against blood-stage and mature sexual stages of Plasmodium falciparum and no toxicity in human cells. Resistance selection studies with 31 identified a previously unknown point mutation in the P. falciparum multidrug-resistance protein 1 (pfmdr1) gene, for which we confirmed causality by CRISPR/Cas9-based gene editing as the primary mediator of resistance. No cross-resistance toward first-line antimalarials was identified in compound 31-resistant parasites. Proteomics studies indicated that the primary mode of action of 31 is through direct binding to cytosolic ribosomal subunits, thereby inhibiting protein synthesis in the parasite. Taken together, compound 31 is a promising starting point for the development of a next-generation antimalarial.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.