Neuroanatomy-Informed Brain-Machine Hybrid Intelligence for Robust Acoustic Target Detection.

IF 18.1 Q1 ENGINEERING, BIOMEDICAL
Cyborg and bionic systems (Washington, D.C.) Pub Date : 2025-10-17 eCollection Date: 2025-01-01 DOI:10.34133/cbsystems.0438
Jianting Shi, Jiaqi Wang, Weijie Fei, Aberham Genetu Feleke, Luzheng Bi
{"title":"Neuroanatomy-Informed Brain-Machine Hybrid Intelligence for Robust Acoustic Target Detection.","authors":"Jianting Shi, Jiaqi Wang, Weijie Fei, Aberham Genetu Feleke, Luzheng Bi","doi":"10.34133/cbsystems.0438","DOIUrl":null,"url":null,"abstract":"<p><p>Sound target detection (STD) plays a critical role in modern acoustic sensing systems. However, existing automated STD methods show poor robustness and limited generalization, especially under low signal-to-noise ratio (SNR) conditions or when processing previously unencountered sound categories. To overcome these limitations, we first propose a brain-computer interface (BCI)-based STD method that utilizes neural responses to auditory stimuli. Our approach features the Triple-Region Spatiotemporal Dynamics Attention Network (Tri-SDANet), an electroencephalogram (EEG) decoding model incorporating neuroanatomical priors derived from EEG source analysis to enhance decoding accuracy and provide interpretability in complex auditory scenes. Recognizing the inherent limitations of stand-alone BCI systems (notably their high false alarm rates), we further develop an adaptive confidence-based brain-machine fusion strategy that intelligently combines decisions from both the BCI and conventional acoustic detection models. This hybrid approach effectively merges the complementary strengths of neural perception and acoustic feature learning. We validate the proposed method through experiments with 16 participants. Experimental results demonstrate that the Tri-SDANet achieves state-of-the-art performance in neural decoding under complex acoustic conditions. Moreover, the hybrid system maintains reliable detection performance at low SNR levels while exhibiting remarkable generalization to unseen target classes. In addition, source-level EEG analysis reveals distinct brain activation patterns associated with target perception, offering neuroscientific validation for our model design. This work pioneers a neuro-acoustic fusion paradigm for robust STD, offering a generalizable solution for real-world applications through the integration of noninvasive neural signals with artificial intelligence.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0438"},"PeriodicalIF":18.1000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sound target detection (STD) plays a critical role in modern acoustic sensing systems. However, existing automated STD methods show poor robustness and limited generalization, especially under low signal-to-noise ratio (SNR) conditions or when processing previously unencountered sound categories. To overcome these limitations, we first propose a brain-computer interface (BCI)-based STD method that utilizes neural responses to auditory stimuli. Our approach features the Triple-Region Spatiotemporal Dynamics Attention Network (Tri-SDANet), an electroencephalogram (EEG) decoding model incorporating neuroanatomical priors derived from EEG source analysis to enhance decoding accuracy and provide interpretability in complex auditory scenes. Recognizing the inherent limitations of stand-alone BCI systems (notably their high false alarm rates), we further develop an adaptive confidence-based brain-machine fusion strategy that intelligently combines decisions from both the BCI and conventional acoustic detection models. This hybrid approach effectively merges the complementary strengths of neural perception and acoustic feature learning. We validate the proposed method through experiments with 16 participants. Experimental results demonstrate that the Tri-SDANet achieves state-of-the-art performance in neural decoding under complex acoustic conditions. Moreover, the hybrid system maintains reliable detection performance at low SNR levels while exhibiting remarkable generalization to unseen target classes. In addition, source-level EEG analysis reveals distinct brain activation patterns associated with target perception, offering neuroscientific validation for our model design. This work pioneers a neuro-acoustic fusion paradigm for robust STD, offering a generalizable solution for real-world applications through the integration of noninvasive neural signals with artificial intelligence.

基于神经解剖学的脑机混合智能鲁棒声目标检测。
声目标检测在现代声传感系统中起着至关重要的作用。然而,现有的自动化STD方法鲁棒性较差,泛化程度有限,特别是在低信噪比(SNR)条件下或处理以前未遇到的声音类别时。为了克服这些限制,我们首先提出了一种基于脑机接口(BCI)的STD方法,该方法利用神经对听觉刺激的反应。我们的方法采用了三区域时空动态注意网络(Tri-SDANet),这是一种脑电图(EEG)解码模型,结合了脑电图源分析得出的神经解剖学先验,以提高解码精度并提供复杂听觉场景的可解释性。认识到独立脑机接口系统的固有局限性(特别是其高虚警率),我们进一步开发了一种自适应的基于置信度的脑机融合策略,该策略智能地结合了脑机接口和传统声学检测模型的决策。这种混合方法有效地融合了神经感知和声学特征学习的互补优势。我们通过16名参与者的实验验证了所提出的方法。实验结果表明,Tri-SDANet在复杂声学条件下具有较好的神经解码性能。此外,混合系统在低信噪比水平下保持可靠的检测性能,同时对未知目标类别表现出显著的泛化。此外,源级脑电图分析揭示了与目标感知相关的不同大脑激活模式,为我们的模型设计提供了神经科学验证。这项工作开创了鲁棒性STD的神经-声学融合范式,通过将非侵入性神经信号与人工智能相结合,为现实应用提供了一种通用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信