Genoveve G Gutierrez, Richard J Ortiz, Victoria Norman, Rebecca A Prosser, Christopher A Baker
{"title":"Bubble Perfusion Brain Slice Culture with Single-Droplet Stimulus Delivery in a 3D Printed Microfluidic Device.","authors":"Genoveve G Gutierrez, Richard J Ortiz, Victoria Norman, Rebecca A Prosser, Christopher A Baker","doi":"10.1021/acsmeasuresciau.5c00028","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ex vivo</i> tissue culture can model tissue physiology under well-controlled conditions and is especially promising for understanding the complex mechanisms of the brain. Three-dimensional (3D) printing has immense potential to accelerate microfluidic technology development, especially for <i>ex vivo</i> tissue culture devices where miniaturization is ultimately limited by the physical dimensions of tissue explants. Here we describe the development of a 3D printed microfluidic perfusion device for <i>ex vivo</i> brain slices that utilizes media droplets segmented by oxygen bubbles, a perfusion technique we call \"bubble perfusion\". Device design considerations are described, including materials property challenges associated with 3D printed plastic, such as wetting behavior and thermal conductivity challenges. Integrating a heated water circulation chamber and media prewarming chambers yielded media droplets delivered to brain slice explants at a temperature of 36.8 ± 0.13 °C, with tissue experiencing a temperature drift of 0.5 ± 0.09 °C over the course of a 60 s media droplet exposure. Murine brain tissue explants containing the suprachiasmatic nucleus (SCN) or entorhinal cortex (EC) were observed to be viable within the perfusion system by fluorescence imaging of intracellular Ca<sup>2+</sup> flux induced by single-droplet stimulus of 60 mM KCl. Robust Ca<sup>2+</sup> flux was observed for perfusion experiments lasting up to 12 h, with sequential droplet observations indicating the temporal dynamics of Ca<sup>2+</sup> responses. End-point propidium iodide staining was used to characterize the health of EC and SCN tissue, with <i>ca</i>. 60% of cells in both regions showing no sign of membrane damage after 12 h of perfusion. The utility of the perfusion system toward pharmacological studies was demonstrated by comparing the Ca<sup>2+</sup> flux induced by stimulus with 50 μM cannabidiol (CBD) <i>vs</i> 50 μM anandamide (AEA). Interestingly, similar magnitude and temporal dynamics of Ca<sup>2+</sup> flux were observed for both CBD and AEA stimuli despite differential proposed mechanisms of action with respect to the CB1 receptor. These studies demonstrate the utility of the 3D printed bubble perfusion system toward the study of receptor-binding ligands that induce relatively modest magnitudes of Ca<sup>2+</sup> flux.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 5","pages":"636-646"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.5c00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ex vivo tissue culture can model tissue physiology under well-controlled conditions and is especially promising for understanding the complex mechanisms of the brain. Three-dimensional (3D) printing has immense potential to accelerate microfluidic technology development, especially for ex vivo tissue culture devices where miniaturization is ultimately limited by the physical dimensions of tissue explants. Here we describe the development of a 3D printed microfluidic perfusion device for ex vivo brain slices that utilizes media droplets segmented by oxygen bubbles, a perfusion technique we call "bubble perfusion". Device design considerations are described, including materials property challenges associated with 3D printed plastic, such as wetting behavior and thermal conductivity challenges. Integrating a heated water circulation chamber and media prewarming chambers yielded media droplets delivered to brain slice explants at a temperature of 36.8 ± 0.13 °C, with tissue experiencing a temperature drift of 0.5 ± 0.09 °C over the course of a 60 s media droplet exposure. Murine brain tissue explants containing the suprachiasmatic nucleus (SCN) or entorhinal cortex (EC) were observed to be viable within the perfusion system by fluorescence imaging of intracellular Ca2+ flux induced by single-droplet stimulus of 60 mM KCl. Robust Ca2+ flux was observed for perfusion experiments lasting up to 12 h, with sequential droplet observations indicating the temporal dynamics of Ca2+ responses. End-point propidium iodide staining was used to characterize the health of EC and SCN tissue, with ca. 60% of cells in both regions showing no sign of membrane damage after 12 h of perfusion. The utility of the perfusion system toward pharmacological studies was demonstrated by comparing the Ca2+ flux induced by stimulus with 50 μM cannabidiol (CBD) vs 50 μM anandamide (AEA). Interestingly, similar magnitude and temporal dynamics of Ca2+ flux were observed for both CBD and AEA stimuli despite differential proposed mechanisms of action with respect to the CB1 receptor. These studies demonstrate the utility of the 3D printed bubble perfusion system toward the study of receptor-binding ligands that induce relatively modest magnitudes of Ca2+ flux.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.