{"title":"Chaotic and quantum dynamics in driven-dissipative bosonic chains.","authors":"Filippo Ferrari, Fabrizio Minganti, Camille Aron, Vincenzo Savona","doi":"10.1038/s42005-025-02314-8","DOIUrl":null,"url":null,"abstract":"<p><p>Thermalization in quantum many-body systems typically unfolds over timescales governed by intrinsic relaxation mechanisms. Yet, its spatial aspect is less understood. We investigate this phenomenon in the nonequilibrium steady state (NESS) of a Bose-Hubbard chain subject to coherent driving and dissipation at its boundaries, a setup inspired by current designs in circuit quantum electrodynamics. The dynamical fingerprints of chaos in this NESS are probed using semiclassical out-of-time-order correlators within the truncated Wigner approximation. At intermediate drive strengths, we uncover a two-stage thermalization along the spatial dimension: phase coherence is rapidly lost near the drive, while amplitude relaxation occurs over much longer distances. This separation of scales gives rise to an extended hydrodynamic regime exhibiting anomalous temperature profiles, which we designate as a \"prethermal\" domain. At stronger drives, the system enters a nonthermal, non-chaotic finite-momentum condensate characterized by sub-Poissonian photon statistics and a spatially modulated phase profile, whose stability is undermined by quantum fluctuations. We explore the conditions underlying this protracted thermalization in space and argue that similar mechanisms are likely to emerge in a broad class of extended driven-dissipative systems.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"407"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02314-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermalization in quantum many-body systems typically unfolds over timescales governed by intrinsic relaxation mechanisms. Yet, its spatial aspect is less understood. We investigate this phenomenon in the nonequilibrium steady state (NESS) of a Bose-Hubbard chain subject to coherent driving and dissipation at its boundaries, a setup inspired by current designs in circuit quantum electrodynamics. The dynamical fingerprints of chaos in this NESS are probed using semiclassical out-of-time-order correlators within the truncated Wigner approximation. At intermediate drive strengths, we uncover a two-stage thermalization along the spatial dimension: phase coherence is rapidly lost near the drive, while amplitude relaxation occurs over much longer distances. This separation of scales gives rise to an extended hydrodynamic regime exhibiting anomalous temperature profiles, which we designate as a "prethermal" domain. At stronger drives, the system enters a nonthermal, non-chaotic finite-momentum condensate characterized by sub-Poissonian photon statistics and a spatially modulated phase profile, whose stability is undermined by quantum fluctuations. We explore the conditions underlying this protracted thermalization in space and argue that similar mechanisms are likely to emerge in a broad class of extended driven-dissipative systems.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.