Animal experiment on osseointegration of porous titanium root analogue implants with composite CSn-TAK242 coating.

IF 4.8 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-10-03 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1673758
Hui Li, Dan Luo, Yudong Gao, Dashan Wang, Jianjun Yang, Zexian Xu
{"title":"Animal experiment on osseointegration of porous titanium root analogue implants with composite CSn-TAK242 coating.","authors":"Hui Li, Dan Luo, Yudong Gao, Dashan Wang, Jianjun Yang, Zexian Xu","doi":"10.3389/fbioe.2025.1673758","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Chitosan nanoparticles loaded with TLR4 inhibitors (TAK242) were coated on porous titanium root analogue implants and placeded into beagles to investigate the role of TLR4 inhibitors in inhibiting inflammatory reactions and promoting osseointegration <i>in vivo</i>.</p><p><strong>Methods: </strong>The control group consisted of porous titanium root analogue implants fabricated via digital medical technology and 3D printing, while the experimental group included porous titanium root analogue implants with CSn and CSn-TAK242 bioactive coatings. Three groups of implants were inserted into the jaws of dogs, with their stability coefficients immediately measured upon implantation. After 3 months, samples were collected, and the bone integration and gingival attachment of the three groups were assessed using X-rays, Micro-CT, and histological section staining.</p><p><strong>Results: </strong>All groups of porous titanium root analogue implants were correctly placed within the alveolar sockets. The stability coefficients of the implants immediately post-implantation in the control group, CSn group, and CSn-TAK242 group were (64.29 ± 4.01), (62.55 ± 1.98), and (64.59 ± 3.28), respectively, with no significant statistical difference (P>0.05). Three months post-surgery, imaging and histological examinations revealed bone integration with the surrounding bone tissue for all implant groups. BIC results showed: control group (68.11 ± 3.63)%, CSn group (71.07 ± 2.83)%, and Csn-TAK242 group (78.6 ± 4.52)%, with the BIC being highest in the CSn-TAK242 group, followed by the CSn group, and lowest in the control group (P<0.05). More importantly, compared with the control group, the BV/TV of the CSn-TAK242 group was significantly higher. In addition, the Tb.Th of the CSn-TAK242 group was significantly higher than that of the control group and CSn group (P<0.05). The smooth structures at the upper ends of the implants had tight gingival tissue attachment.</p><p><strong>Conclusion: </strong>Porous titanium root analogue implants consistent with the target root morphology were successfully fabricated using digital medical technology and 3D printing. The composite CSn-TAK242 coating further enhanced the osseointegration effects of these implants.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1673758"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12531250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1673758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Chitosan nanoparticles loaded with TLR4 inhibitors (TAK242) were coated on porous titanium root analogue implants and placeded into beagles to investigate the role of TLR4 inhibitors in inhibiting inflammatory reactions and promoting osseointegration in vivo.

Methods: The control group consisted of porous titanium root analogue implants fabricated via digital medical technology and 3D printing, while the experimental group included porous titanium root analogue implants with CSn and CSn-TAK242 bioactive coatings. Three groups of implants were inserted into the jaws of dogs, with their stability coefficients immediately measured upon implantation. After 3 months, samples were collected, and the bone integration and gingival attachment of the three groups were assessed using X-rays, Micro-CT, and histological section staining.

Results: All groups of porous titanium root analogue implants were correctly placed within the alveolar sockets. The stability coefficients of the implants immediately post-implantation in the control group, CSn group, and CSn-TAK242 group were (64.29 ± 4.01), (62.55 ± 1.98), and (64.59 ± 3.28), respectively, with no significant statistical difference (P>0.05). Three months post-surgery, imaging and histological examinations revealed bone integration with the surrounding bone tissue for all implant groups. BIC results showed: control group (68.11 ± 3.63)%, CSn group (71.07 ± 2.83)%, and Csn-TAK242 group (78.6 ± 4.52)%, with the BIC being highest in the CSn-TAK242 group, followed by the CSn group, and lowest in the control group (P<0.05). More importantly, compared with the control group, the BV/TV of the CSn-TAK242 group was significantly higher. In addition, the Tb.Th of the CSn-TAK242 group was significantly higher than that of the control group and CSn group (P<0.05). The smooth structures at the upper ends of the implants had tight gingival tissue attachment.

Conclusion: Porous titanium root analogue implants consistent with the target root morphology were successfully fabricated using digital medical technology and 3D printing. The composite CSn-TAK242 coating further enhanced the osseointegration effects of these implants.

Abstract Image

Abstract Image

Abstract Image

CSn-TAK242复合涂层多孔钛根模拟种植体骨整合的动物实验。
目的:将负载TLR4抑制剂(TAK242)的壳聚糖纳米颗粒包被在多孔钛根模拟种植体上,植入比格犬体内,研究TLR4抑制剂在体内抑制炎症反应和促进骨整合中的作用。方法:对照组采用数字医疗技术和3D打印技术制备多孔钛根模拟种植体,实验组采用CSn和CSn- tak242生物活性涂层制备多孔钛根模拟种植体。将三组植入物植入狗的颌中,植入后立即测量其稳定系数。3个月后采集标本,采用x线、Micro-CT、组织学切片染色等方法评估三组患者的骨整合和牙龈附着情况。结果:所有组的多孔钛根模拟种植体均正确放置在牙槽内。对照组、CSn组、CSn- tak242组种植后即刻种植体稳定性系数分别为(64.29±4.01)、(62.55±1.98)、(64.59±3.28),差异无统计学意义(P < 0.05)。术后3个月,影像学和组织学检查显示所有种植体组骨与周围骨组织融合。BIC结果显示:对照组(68.11±3.63)%,CSn组(71.07±2.83)%,CSn- tak242组(78.6±4.52)%,其中CSn- tak242组BIC最高,CSn组次之,对照组最低。结论:采用数字医疗技术和3D打印技术成功制备出符合目标根形态的多孔钛根模拟种植体。复合CSn-TAK242涂层进一步增强了种植体的骨整合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信