Vera M Scharek, Tommy Kröger, Karin Keil, Heike Traub, Björn Meermann
{"title":"A new elemental analytical approach for microplastic sum parameter analysis-ETV/ICP-MS with CO<sub>2</sub>.","authors":"Vera M Scharek, Tommy Kröger, Karin Keil, Heike Traub, Björn Meermann","doi":"10.1007/s00216-025-06146-x","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) are pervasive environmental pollutants and are considered one of the main challenges of our time. However, a fast and comprehensive analytical approach for MP analysis in complex matrices traceable to SI units is still lacking. In this context, we report a fast screening tool for the sum parameter analysis of MPs using electrothermal vaporization (ETV) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). In our proof-of-concept study, we observed size-independent detection of MPs as peaks above the <sup>13</sup>C<sup>+</sup> signal background in the nano- to micrometer range without limitations regarding the polymer type. Quantification of the <sup>13</sup>C<sup>+</sup> MP signals was accomplished via an external gas calibration utilizing dynamic dilution of carbon dioxide with argon, yielding recovery rates of 80-96% for MP reference material (RM) of polymer types commonly found in the environment. The applicability to a soil sample was demonstrated through spiking experiments with a polyethylene (PE) MP RM in soil. The limit of detection (LOD) was estimated to be 0.13 µg C, equaling the detection of a single spherical low-density-PE particle of about 70 µm, and a limit of quantification (LOQ) of 0.42 µg C.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-06146-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are pervasive environmental pollutants and are considered one of the main challenges of our time. However, a fast and comprehensive analytical approach for MP analysis in complex matrices traceable to SI units is still lacking. In this context, we report a fast screening tool for the sum parameter analysis of MPs using electrothermal vaporization (ETV) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). In our proof-of-concept study, we observed size-independent detection of MPs as peaks above the 13C+ signal background in the nano- to micrometer range without limitations regarding the polymer type. Quantification of the 13C+ MP signals was accomplished via an external gas calibration utilizing dynamic dilution of carbon dioxide with argon, yielding recovery rates of 80-96% for MP reference material (RM) of polymer types commonly found in the environment. The applicability to a soil sample was demonstrated through spiking experiments with a polyethylene (PE) MP RM in soil. The limit of detection (LOD) was estimated to be 0.13 µg C, equaling the detection of a single spherical low-density-PE particle of about 70 µm, and a limit of quantification (LOQ) of 0.42 µg C.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.