High-Temperature Superlubricity Microcapsules.

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-19 DOI:10.1002/smll.202508109
Peili Gao, Yunze Li, Yi Zhang, Kai Gao, Hao Chen, Lin Zhang, Guoxin Xie
{"title":"High-Temperature Superlubricity Microcapsules.","authors":"Peili Gao, Yunze Li, Yi Zhang, Kai Gao, Hao Chen, Lin Zhang, Guoxin Xie","doi":"10.1002/smll.202508109","DOIUrl":null,"url":null,"abstract":"<p><p>Superlubricity, characterized by an ultra-low coefficient of friction (COF) below 0.01, is crucial for reducing energy losses in mechanical systems but remains challenging at high temperatures. This study designed a high-temperature-resistant solid-liquid coupled microcapsule containing perfluoropolyether (PFPE) and molybdenum disulfide (MoS<sub>2</sub>) encapsulated in silica (SiO<sub>2</sub>) to develop a self-lubricating composite material for high-temperature applications. By embedding these microcapsules into a polytetrafluoroethylene (PTFE) matrix, macroscopic superlubricity (minimum COF = 0.005) is achieved in atmospheric environments up to 200-250 °C. The excellent tribological performance is attributed to the synergistic effects of the stress-responsive release of trace lubricants, the decreased COF of the PTFE matrix at high temperatures, the low viscosity of PFPE oil reducing internal friction, and the formation of a boundary lubrication film by MoS<sub>2</sub>. This work provided a new strategy for enabling low-wear operation of polymer materials under extreme thermal conditions and holds significant implications for expanding the application boundaries of superlubricity technology.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e08109"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superlubricity, characterized by an ultra-low coefficient of friction (COF) below 0.01, is crucial for reducing energy losses in mechanical systems but remains challenging at high temperatures. This study designed a high-temperature-resistant solid-liquid coupled microcapsule containing perfluoropolyether (PFPE) and molybdenum disulfide (MoS2) encapsulated in silica (SiO2) to develop a self-lubricating composite material for high-temperature applications. By embedding these microcapsules into a polytetrafluoroethylene (PTFE) matrix, macroscopic superlubricity (minimum COF = 0.005) is achieved in atmospheric environments up to 200-250 °C. The excellent tribological performance is attributed to the synergistic effects of the stress-responsive release of trace lubricants, the decreased COF of the PTFE matrix at high temperatures, the low viscosity of PFPE oil reducing internal friction, and the formation of a boundary lubrication film by MoS2. This work provided a new strategy for enabling low-wear operation of polymer materials under extreme thermal conditions and holds significant implications for expanding the application boundaries of superlubricity technology.

高温超润滑微胶囊。
以低于0.01的超低摩擦系数(COF)为特征的超润滑性,对于减少机械系统的能量损失至关重要,但在高温下仍然具有挑战性。本研究设计了一种含全氟聚醚(PFPE)和二硫化钼(MoS2)的耐高温固液耦合微胶囊,用于开发一种高温自润滑复合材料。通过将这些微胶囊嵌入聚四氟乙烯(PTFE)基质中,在高达200-250°C的大气环境中实现宏观超润滑(最小COF = 0.005)。优异的摩擦学性能是由于微量润滑剂的应力响应释放,PTFE基体在高温下的COF降低,PFPE油的低粘度减少内摩擦,以及MoS2形成边界润滑膜的协同作用。这项工作为聚合物材料在极端热条件下实现低磨损提供了一种新策略,对扩大超润滑技术的应用范围具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信