Photovoltaic power forecasting using quantum machine learning

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Asel Sagingalieva , Stefan Komornyik , Arsenii Senokosov , Ayush Joshi , Christopher Mansell , Olga Tsurkan , Karan Pinto , Markus Pflitsch , Alexey Melnikov
{"title":"Photovoltaic power forecasting using quantum machine learning","authors":"Asel Sagingalieva ,&nbsp;Stefan Komornyik ,&nbsp;Arsenii Senokosov ,&nbsp;Ayush Joshi ,&nbsp;Christopher Mansell ,&nbsp;Olga Tsurkan ,&nbsp;Karan Pinto ,&nbsp;Markus Pflitsch ,&nbsp;Alexey Melnikov","doi":"10.1016/j.solener.2025.114016","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate forecasting of photovoltaic power is essential for reliable grid integration, yet remains difficult due to highly variable irradiance, complex meteorological drivers, site geography, and device-specific behavior. Although contemporary machine learning has achieved successes, it is not clear that these approaches are optimal: new model classes may further enhance performance and data efficiency. We investigate hybrid quantum neural networks for time-series forecasting of photovoltaic power and introduce two architectures. The first, a Hybrid Quantum Long Short-Term Memory model, reduces mean absolute error and mean squared error by more than 40% relative to the strongest baselines evaluated. The second, a Hybrid Quantum Sequence-to-Sequence model, once trained, it predicts power for arbitrary forecast horizons without requiring prior meteorological inputs and achieves a 16% lower mean absolute error than the best baseline on this task. Both hybrid models maintain superior accuracy when training data are limited, indicating improved data efficiency. These results show that hybrid quantum models address key challenges in photovoltaic power forecasting and offer a practical route to more reliable, data-efficient energy predictions.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"302 ","pages":"Article 114016"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25007790","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate forecasting of photovoltaic power is essential for reliable grid integration, yet remains difficult due to highly variable irradiance, complex meteorological drivers, site geography, and device-specific behavior. Although contemporary machine learning has achieved successes, it is not clear that these approaches are optimal: new model classes may further enhance performance and data efficiency. We investigate hybrid quantum neural networks for time-series forecasting of photovoltaic power and introduce two architectures. The first, a Hybrid Quantum Long Short-Term Memory model, reduces mean absolute error and mean squared error by more than 40% relative to the strongest baselines evaluated. The second, a Hybrid Quantum Sequence-to-Sequence model, once trained, it predicts power for arbitrary forecast horizons without requiring prior meteorological inputs and achieves a 16% lower mean absolute error than the best baseline on this task. Both hybrid models maintain superior accuracy when training data are limited, indicating improved data efficiency. These results show that hybrid quantum models address key challenges in photovoltaic power forecasting and offer a practical route to more reliable, data-efficient energy predictions.
利用量子机器学习进行光伏发电预测
光伏发电的准确预测对于可靠的电网整合至关重要,但由于高度可变的辐照度、复杂的气象驱动因素、地点地理和设备特定行为,仍然很困难。尽管当代机器学习已经取得了成功,但尚不清楚这些方法是否是最佳的:新的模型类可能会进一步提高性能和数据效率。我们研究了混合量子神经网络用于光伏发电时间序列预测,并介绍了两种结构。第一种是混合量子长短期记忆模型,相对于评估的最强基线,平均绝对误差和均方误差降低了40%以上。第二种是混合量子序列到序列模型,经过训练后,它可以在不需要事先气象输入的情况下预测任意预测范围的能力,并且在此任务中实现比最佳基线低16%的平均绝对误差。在训练数据有限的情况下,两种混合模型都保持了较高的准确性,表明数据效率有所提高。这些结果表明,混合量子模型解决了光伏发电预测中的关键挑战,并为更可靠、数据高效的能源预测提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信