Selective formation of aromatics through CO2 hydrogenation over HZSM-5 cladded FeK core–shell catalyst

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-10-19 DOI:10.1016/j.fuel.2025.137207
Haripal Singh Malhi , Bantayehu Uba Uge , Lenka Matějová
{"title":"Selective formation of aromatics through CO2 hydrogenation over HZSM-5 cladded FeK core–shell catalyst","authors":"Haripal Singh Malhi ,&nbsp;Bantayehu Uba Uge ,&nbsp;Lenka Matějová","doi":"10.1016/j.fuel.2025.137207","DOIUrl":null,"url":null,"abstract":"<div><div>The selective hydrogenation of CO<sub>2</sub> to produce aromatics presents an intriguing approach for carbon utilization and the formation of high-value chemicals. This study presents a novel core–shell FeK@HZSM-5 catalyst, developed by cladding HZSM-5 zeolite onto a K-promoted Fe oxide core, to enable the direct conversion of CO<sub>2</sub> into aromatics. Under optimum reaction conditions (320 °C, 2.0 MPa, H<sub>2</sub>/CO<sub>2</sub> = 3), the FeK@HZSM-5 catalyst accomplishes 43.2 % selectivity for aromatics at 31.1 % conversion of CO<sub>2</sub>, outperforming the physically mixed FeK-HZSM-5 catalyst (aromatics selectivity: 31.8 %) while keeping CH<sub>4</sub> selectivity below 12 %. Mechanistic investigations reveal that the reaction follows a tandem RWGS-FTS pathway, with olefins serving as crucial intermediates. Robust interactions between Fe and zeolite enhance the stability of active Fe<sub>5</sub>C<sub>2</sub> phases and graphitic carbon, promoting olefin chain growth while inhibiting methanation. The appropriate density of Brønsted acid sites facilitates efficient aromatization, whereas an excess of acidity and increased shell thickness result in over-hydrocracking. The FeK@HZSM-5 catalyst exhibits a notable improvement in CO<sub>2</sub> adsorption capacity, attributed to the occurrence of increased oxygen vacancies and higher surface basicity, which facilitates effective CO<sub>2</sub> activation. The confinement effect of the zeolite shell further modulates intermediate diffusion and water retention. A FeK-to-HZSM-5 wt ratio of 1:2 provides the optimal structural and chemical balance. The catalyst exhibits remarkable stability after 100 h of operation with minimal coke deposition, emphasizing its promise for industrial CO<sub>2</sub>-to-aromatics conversion.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"406 ","pages":"Article 137207"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125029321","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The selective hydrogenation of CO2 to produce aromatics presents an intriguing approach for carbon utilization and the formation of high-value chemicals. This study presents a novel core–shell FeK@HZSM-5 catalyst, developed by cladding HZSM-5 zeolite onto a K-promoted Fe oxide core, to enable the direct conversion of CO2 into aromatics. Under optimum reaction conditions (320 °C, 2.0 MPa, H2/CO2 = 3), the FeK@HZSM-5 catalyst accomplishes 43.2 % selectivity for aromatics at 31.1 % conversion of CO2, outperforming the physically mixed FeK-HZSM-5 catalyst (aromatics selectivity: 31.8 %) while keeping CH4 selectivity below 12 %. Mechanistic investigations reveal that the reaction follows a tandem RWGS-FTS pathway, with olefins serving as crucial intermediates. Robust interactions between Fe and zeolite enhance the stability of active Fe5C2 phases and graphitic carbon, promoting olefin chain growth while inhibiting methanation. The appropriate density of Brønsted acid sites facilitates efficient aromatization, whereas an excess of acidity and increased shell thickness result in over-hydrocracking. The FeK@HZSM-5 catalyst exhibits a notable improvement in CO2 adsorption capacity, attributed to the occurrence of increased oxygen vacancies and higher surface basicity, which facilitates effective CO2 activation. The confinement effect of the zeolite shell further modulates intermediate diffusion and water retention. A FeK-to-HZSM-5 wt ratio of 1:2 provides the optimal structural and chemical balance. The catalyst exhibits remarkable stability after 100 h of operation with minimal coke deposition, emphasizing its promise for industrial CO2-to-aromatics conversion.

Abstract Image

HZSM-5包覆FeK核壳催化剂上CO2加氢选择性生成芳烃的研究
二氧化碳选择性加氢生产芳烃为碳利用和高价值化学品的形成提供了一种有趣的方法。本研究提出了一种新型的核壳FeK@HZSM-5催化剂,通过将HZSM-5沸石包覆在k促进的Fe氧化物核心上,实现了二氧化碳直接转化为芳烃。在最佳反应条件(320℃,2.0 MPa, H2/CO2 = 3)下,FeK@HZSM-5催化剂对芳烃的选择性为43.2%,CO2转化率为31.1%,优于物理混合FeK-HZSM-5催化剂(芳烃选择性为31.8%),CH4选择性低于12%。机理研究表明,反应遵循串联RWGS-FTS途径,烯烃作为关键的中间体。铁与沸石之间的强大相互作用增强了活性Fe5C2相和石墨碳的稳定性,促进了烯烃链的生长,同时抑制了甲烷化。适当的Brønsted酸位密度有助于有效芳构化,而过量的酸度和增加的壳厚会导致过度加氢裂化。FeK@HZSM-5催化剂对CO2的吸附能力有显著提高,这是由于氧空位增加,表面碱度提高,有利于CO2的有效活化。沸石壳的约束效应进一步调节了中间扩散和水潴留。fek与hzsm -5的重量比为1:2,提供了最佳的结构和化学平衡。该催化剂在运行100小时后表现出显著的稳定性,焦沉积最少,强调了其在工业二氧化碳转化为芳烃方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信