Johannes Wette , Florian Sutter , Teresa Diamantino , Marco Montecchi , Gregor Bern , Aránzazu Fernández-García
{"title":"Determination of reflectance of interest from limited state-of-the-art solar reflector field soiling measurements","authors":"Johannes Wette , Florian Sutter , Teresa Diamantino , Marco Montecchi , Gregor Bern , Aránzazu Fernández-García","doi":"10.1016/j.solener.2025.114057","DOIUrl":null,"url":null,"abstract":"<div><div>In concentrated solar thermal technologies, plant operators usually monitor the soiling of their solar field with handheld reflectometers. These measurements can be used for yield calculations and to adapt cleaning strategies: if the reflectometer reading falls below an empirically established threshold, the solar field should be cleaned. There are several commercial reflectometers available for this purpose, but all of them measure at different combinations of wavelength, acceptance angle or incidence angle. It is the purpose of this study to bring the readings from all main commercial reflectometers to the same representative value, enabling their comparison with one another and the translation of these readings into a meaningful reflectance parameter. Thus, different handheld reflectometers are correlated with a laboratory reflectometer, capable of measuring in the whole solar spectral region, covering a wide range of incidence and acceptance angles. The most significant parameter is the near-specular solar-weighted reflectance, measured at the typical incidence and acceptance angles for a given plant, as it is the most precise parameter to describe the reflected energy from the solar field. The correlations for all included reflectometers, show highly linear correlations over a wide range of soiling levels with low deviations. Consequently, the correlations presented herein enable the plant operators at the studied site to compute the near-specular solar-weighted reflectance from their reflectometer readings. and, with that, increase the significance of the measurements without collecting any additional data. The work also establishes a detailed procedure to derive this type of correlations at any site of interest.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"302 ","pages":"Article 114057"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25008205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In concentrated solar thermal technologies, plant operators usually monitor the soiling of their solar field with handheld reflectometers. These measurements can be used for yield calculations and to adapt cleaning strategies: if the reflectometer reading falls below an empirically established threshold, the solar field should be cleaned. There are several commercial reflectometers available for this purpose, but all of them measure at different combinations of wavelength, acceptance angle or incidence angle. It is the purpose of this study to bring the readings from all main commercial reflectometers to the same representative value, enabling their comparison with one another and the translation of these readings into a meaningful reflectance parameter. Thus, different handheld reflectometers are correlated with a laboratory reflectometer, capable of measuring in the whole solar spectral region, covering a wide range of incidence and acceptance angles. The most significant parameter is the near-specular solar-weighted reflectance, measured at the typical incidence and acceptance angles for a given plant, as it is the most precise parameter to describe the reflected energy from the solar field. The correlations for all included reflectometers, show highly linear correlations over a wide range of soiling levels with low deviations. Consequently, the correlations presented herein enable the plant operators at the studied site to compute the near-specular solar-weighted reflectance from their reflectometer readings. and, with that, increase the significance of the measurements without collecting any additional data. The work also establishes a detailed procedure to derive this type of correlations at any site of interest.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass