Free interface problem of Navier-Stokes-Darcy equations without surface tension

IF 2.3 2区 数学 Q1 MATHEMATICS
Ningning Gao , Jinjing Liu , Lei Yao
{"title":"Free interface problem of Navier-Stokes-Darcy equations without surface tension","authors":"Ningning Gao ,&nbsp;Jinjing Liu ,&nbsp;Lei Yao","doi":"10.1016/j.jde.2025.113850","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the free interface problem of incompressible Navier-Stokes-Darcy equations without surface tension in a finite-depth domain. We establish the global-in-time solution for the free interface problem of Navier-Stokes-Darcy equations in a horizontally infinite domain, without any low frequency assumptions of the initial data, in both two and three dimensions. Moreover, we present the decay of the solution. The key point lies in estimating <span><math><mn>4</mn><mi>N</mi><mo>−</mo><mn>1</mn></math></span> order horizontal spatial derivatives of the “Eulerian horizontal spatial derivative” <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> of the solution. This allows us to handle the 4<em>N</em> order horizontal spatial derivatives of the solution and facilitates the nonlinear cancellation of the highest order spatial regularity of the free boundary.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113850"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008770","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the free interface problem of incompressible Navier-Stokes-Darcy equations without surface tension in a finite-depth domain. We establish the global-in-time solution for the free interface problem of Navier-Stokes-Darcy equations in a horizontally infinite domain, without any low frequency assumptions of the initial data, in both two and three dimensions. Moreover, we present the decay of the solution. The key point lies in estimating 4N1 order horizontal spatial derivatives of the “Eulerian horizontal spatial derivative” DA of the solution. This allows us to handle the 4N order horizontal spatial derivatives of the solution and facilitates the nonlinear cancellation of the highest order spatial regularity of the free boundary.
无表面张力的Navier-Stokes-Darcy方程的自由界面问题
研究了有限深度域上无表面张力的不可压缩Navier-Stokes-Darcy方程的自由界面问题。我们建立了水平无限域内Navier-Stokes-Darcy方程自由界面问题的全局实时解,不需要初始数据的任何低频假设,在二维和三维。此外,我们还给出了解的衰减。关键在于估计解的“欧拉水平空间导数”DA的4N−1阶水平空间导数。这使我们能够处理解的4N阶水平空间导数,并有利于自由边界的最高阶空间正则性的非线性消去。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信