Lithium extraction using ionic liquids: Insights from quantum chemical and molecular dynamics simulations

Shamanth Y.U. , Palash Jyoti Boruah , Subrahmanya Bhat K. , Anoop Kishore Vatti , Srikanth Divi , Tamal Banerjee
{"title":"Lithium extraction using ionic liquids: Insights from quantum chemical and molecular dynamics simulations","authors":"Shamanth Y.U. ,&nbsp;Palash Jyoti Boruah ,&nbsp;Subrahmanya Bhat K. ,&nbsp;Anoop Kishore Vatti ,&nbsp;Srikanth Divi ,&nbsp;Tamal Banerjee","doi":"10.1016/j.jil.2025.100177","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries (LIBs) dominate the modern energy infrastructure in scalable power storage and electric mobility. Lithium recovery is crucial for the emergence of a circular economy, and the supply of spent LIBs has increased due to their widespread usage. This work presents the comprehensive evaluation of lithium binding energies and reduced density graph analysis with ionic liquids (ILs) using density functional theory (DFT) calculations. In addition, lithium extraction mechanisms from the aqueous solution using ILs are probed using molecular dynamics (MD) simulations, revealing molecular-scale selectivity. We compared the four ionic liquids (tetra-butylammonium mono-2-ethylhexyl (2-ethylhexyl) phosphate ([N<sub>4444</sub>] [EHPMEH]), tetra-butylammonium bis(2-ethylhexyl) phosphate ([N<sub>4444</sub>][DEHP]), tetrabutylphosphonium bis(2-ethylhexyl)phosphate ([P<sub>4444</sub>] [DEHP]), and tetrabutylphosphonium dodecanoate ([P<sub>4444</sub>][C<sub>11</sub>COO]) to extract lithium. Furthermore, from these MD studies, we investigated the extraction mechanism, structural and dynamic properties, such as density analysis, trajectory density contours, and diffusion coefficients. The detailed analysis of structural properties has yielded critical insights into the interfacial interaction of lithium between the aqueous and the ionic liquid phase; the lithium-ion mobility along the different phases was analysed from computed diffusion coefficients. Our results explain the atomistic mechanism of selected ILs and the superior performance of ([N<sub>4444</sub>] [EHPMEH]) IL in comparison to the other ILs based on localized lithium in the IL phase and binding energies.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 2","pages":"Article 100177"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422025000461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) dominate the modern energy infrastructure in scalable power storage and electric mobility. Lithium recovery is crucial for the emergence of a circular economy, and the supply of spent LIBs has increased due to their widespread usage. This work presents the comprehensive evaluation of lithium binding energies and reduced density graph analysis with ionic liquids (ILs) using density functional theory (DFT) calculations. In addition, lithium extraction mechanisms from the aqueous solution using ILs are probed using molecular dynamics (MD) simulations, revealing molecular-scale selectivity. We compared the four ionic liquids (tetra-butylammonium mono-2-ethylhexyl (2-ethylhexyl) phosphate ([N4444] [EHPMEH]), tetra-butylammonium bis(2-ethylhexyl) phosphate ([N4444][DEHP]), tetrabutylphosphonium bis(2-ethylhexyl)phosphate ([P4444] [DEHP]), and tetrabutylphosphonium dodecanoate ([P4444][C11COO]) to extract lithium. Furthermore, from these MD studies, we investigated the extraction mechanism, structural and dynamic properties, such as density analysis, trajectory density contours, and diffusion coefficients. The detailed analysis of structural properties has yielded critical insights into the interfacial interaction of lithium between the aqueous and the ionic liquid phase; the lithium-ion mobility along the different phases was analysed from computed diffusion coefficients. Our results explain the atomistic mechanism of selected ILs and the superior performance of ([N4444] [EHPMEH]) IL in comparison to the other ILs based on localized lithium in the IL phase and binding energies.
锂提取使用离子液体:从量子化学和分子动力学模拟的见解
锂离子电池(LIBs)在可扩展的电力存储和电力移动方面主导着现代能源基础设施。锂的回收对循环经济的出现至关重要,由于锂的广泛使用,废旧锂的供应也有所增加。本文利用密度泛函理论(DFT)计算,对离子液体(ILs)的锂结合能进行了综合评价,并对离子液体(ILs)的降密度图进行了分析。此外,通过分子动力学(MD)模拟,研究了离子离子从水溶液中提取锂的机理,揭示了分子尺度上的选择性。我们比较了四种离子液体(单-2-乙基己基磷酸四丁铵([N4444][EHPMEH])、二(2-乙基己基)磷酸四丁铵([N4444][DEHP])、二(2-乙基己基)磷酸四丁基磷酸([P4444][DEHP])和十二酸四丁基磷酸([P4444][C11COO])萃取锂的效果。此外,通过这些MD研究,我们研究了萃取机理、结构和动力学特性,如密度分析、轨迹密度轮廓和扩散系数。对结构性质的详细分析对锂在水溶液和离子液相之间的界面相互作用产生了重要的见解;利用计算的扩散系数分析了锂离子沿不同相的迁移率。我们的研究结果解释了所选择的IL的原子机制,以及([N4444] [EHPMEH]) IL与其他基于IL相和结合能局域锂的IL相比的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信