Dual modification of single-crystal Ni-rich cathodes for enhanced thermal safety in pouch cells

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Boran Tao , Zhen Wang , Zhenghua Li , Guilong Jin , Jinzhi Hu , Bingbing Wang , Wei Wu , Fengrui Zhang , Xiaodong Wu
{"title":"Dual modification of single-crystal Ni-rich cathodes for enhanced thermal safety in pouch cells","authors":"Boran Tao ,&nbsp;Zhen Wang ,&nbsp;Zhenghua Li ,&nbsp;Guilong Jin ,&nbsp;Jinzhi Hu ,&nbsp;Bingbing Wang ,&nbsp;Wei Wu ,&nbsp;Fengrui Zhang ,&nbsp;Xiaodong Wu","doi":"10.1016/j.jpowsour.2025.238631","DOIUrl":null,"url":null,"abstract":"<div><div>The trade-off between high energy density and thermal safety in nickel-rich cathodes remains a critical challenge for lithium-ion batteries. This study presents a dual-modification strategy combining fluorine (F<sup>−</sup>) doping with LiCoO<sub>2</sub> (LCO) coating to improve the thermal stability of single-crystalline LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> (SCNCM). We show that F<sup>−</sup> doping enhances bulk stability by substituting oxygen and forming strong TM–F and Li–F bonds, while the LCO coating suppresses interfacial side reactions. In-situ XRD and DSC-TG-MS analyses indicate that the modified material exhibits delayed phase transitions and reduced oxygen release, due to suppressed cation migration and improved oxygen lattice stability. Accelerating rate calorimetry tests confirm that pouch cells using the modified cathode achieve a 45 °C higher onset thermal runaway temperature (T<sub>2</sub>) and a 70 °C lower peak temperature (T<sub>3</sub>), along with reduced oxygen gas emission. Furthermore, the dual-modified cathode retains 91.5 % capacity after 450 cycles at 0.33C, matching the performance of pristine SCNCM without compromising rate capability. This work demonstrates the synergistic role of bulk doping and surface coating in balancing energy density and thermal safety, providing a viable approach to developing advanced Ni-rich cathodes for high-performance LIBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"661 ","pages":"Article 238631"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877532502467X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The trade-off between high energy density and thermal safety in nickel-rich cathodes remains a critical challenge for lithium-ion batteries. This study presents a dual-modification strategy combining fluorine (F) doping with LiCoO2 (LCO) coating to improve the thermal stability of single-crystalline LiNi0.83Co0.12Mn0.05O2 (SCNCM). We show that F doping enhances bulk stability by substituting oxygen and forming strong TM–F and Li–F bonds, while the LCO coating suppresses interfacial side reactions. In-situ XRD and DSC-TG-MS analyses indicate that the modified material exhibits delayed phase transitions and reduced oxygen release, due to suppressed cation migration and improved oxygen lattice stability. Accelerating rate calorimetry tests confirm that pouch cells using the modified cathode achieve a 45 °C higher onset thermal runaway temperature (T2) and a 70 °C lower peak temperature (T3), along with reduced oxygen gas emission. Furthermore, the dual-modified cathode retains 91.5 % capacity after 450 cycles at 0.33C, matching the performance of pristine SCNCM without compromising rate capability. This work demonstrates the synergistic role of bulk doping and surface coating in balancing energy density and thermal safety, providing a viable approach to developing advanced Ni-rich cathodes for high-performance LIBs.
提高袋状电池热安全性的单晶富镍阴极的双重改性
在富含镍的阴极中,高能量密度和热安全性之间的权衡仍然是锂离子电池面临的关键挑战。本研究提出了氟(F−)掺杂与LiCoO2 (LCO)涂层相结合的双改性策略,以提高单晶LiNi0.83Co0.12Mn0.05O2 (SCNCM)的热稳定性。研究表明,F−掺杂通过取代氧和形成强TM-F和Li-F键提高了体稳定性,而LCO涂层抑制了界面副反应。原位XRD和DSC-TG-MS分析表明,由于抑制阳离子迁移和提高氧晶格稳定性,改性材料表现出延迟相变和减少氧释放。加速量热法测试证实,使用改性阴极的袋状电池实现了45°C的高起始热失控温度(T2)和70°C的低峰值温度(T3),同时减少了氧气排放。此外,双改性阴极在0.33℃下循环450次后保持91.5%的容量,在不影响速率能力的情况下与原始SCNCM的性能相匹配。这项工作证明了大块掺杂和表面涂层在平衡能量密度和热安全性方面的协同作用,为开发高性能锂离子电池的先进富镍阴极提供了可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信