Hari Raj , Soorya Saravanan , Melisa Herrmann Alba , Francois Rabuel , Da Huo , Alejandro A. Franco
{"title":"Exploring processability limitations of commercial hard carbon for negative electrodes of Na-ion batteries","authors":"Hari Raj , Soorya Saravanan , Melisa Herrmann Alba , Francois Rabuel , Da Huo , Alejandro A. Franco","doi":"10.1016/j.jpowsour.2025.238588","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing electrode manufacturing processes for sodium-ion batteries (SIBs) is crucial for enhancing their performance and commercial viability. This study systematically investigates the influence of critical electrode fabrication parameters, including solid content, mass loading, and calendering, on commercial hard carbon (HC) electrode properties. Slurries prepared with 35 % and 40 % solid content (SC) demonstrated distinct rheological behaviours, directly affecting electrode mechanical stability and processability. The slurry with SC-35 % provided a better balance between manageable viscosity and robust mechanical stability upon drying, whereas SC-40 % slurry exhibited higher viscosity, particle agglomeration, and poorer electrode mechanical integrity. Calendering was studied at compression degrees of 10 %, 20 %, and 30 %, revealing limited effectiveness in reducing porosity due to the intrinsic mechanical properties of HC, whereas, higher compression degrees led to structural damage. Electrochemical studies conducted in half-cells (HC vs. Na) and full-cells (HC vs. Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>) clearly indicated better electrochemical performance at moderate calendering degrees (10–20 %), effectively balancing mechanical integrity and electrical conductivity. This comprehensive study results in a useful experimental database in academic literature, underscoring the importance of precise control over slurry formulation and calendering parameters to achieve structurally robust electrodes, thus significantly enhancing the practical performance of SIBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"661 ","pages":"Article 238588"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325024243","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing electrode manufacturing processes for sodium-ion batteries (SIBs) is crucial for enhancing their performance and commercial viability. This study systematically investigates the influence of critical electrode fabrication parameters, including solid content, mass loading, and calendering, on commercial hard carbon (HC) electrode properties. Slurries prepared with 35 % and 40 % solid content (SC) demonstrated distinct rheological behaviours, directly affecting electrode mechanical stability and processability. The slurry with SC-35 % provided a better balance between manageable viscosity and robust mechanical stability upon drying, whereas SC-40 % slurry exhibited higher viscosity, particle agglomeration, and poorer electrode mechanical integrity. Calendering was studied at compression degrees of 10 %, 20 %, and 30 %, revealing limited effectiveness in reducing porosity due to the intrinsic mechanical properties of HC, whereas, higher compression degrees led to structural damage. Electrochemical studies conducted in half-cells (HC vs. Na) and full-cells (HC vs. Na3V2(PO4)3) clearly indicated better electrochemical performance at moderate calendering degrees (10–20 %), effectively balancing mechanical integrity and electrical conductivity. This comprehensive study results in a useful experimental database in academic literature, underscoring the importance of precise control over slurry formulation and calendering parameters to achieve structurally robust electrodes, thus significantly enhancing the practical performance of SIBs.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems