Predicting photovoltaic efficiency of two-dimensional Janus materials for applications in solar energy harvesting: A combined first-principles and machine learning study

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Swarup Ghosh
{"title":"Predicting photovoltaic efficiency of two-dimensional Janus materials for applications in solar energy harvesting: A combined first-principles and machine learning study","authors":"Swarup Ghosh","doi":"10.1016/j.solmat.2025.114010","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper reports a combined first-principles density functional theory (DFT) and machine learning (ML) study to predict the photovoltaic efficiency of two-dimensional Janus materials. Initially, the electronic and optical properties of four Janus systems Sc<sub>2</sub>CFBr, Sc<sub>2</sub>CFCl, Sc<sub>2</sub>CHCl and Sc<sub>2</sub>CHF are investigated using DFT. All four compounds exhibit indirect semiconducting behaviour with HSE06 band gaps ranging from 1.61 to 1.88 eV and strong visible light absorption. The associated average charge density, effective mass of charge carriers, and exciton binding energy have also been estimated. The photovoltaic performance parameters including short-circuit current density, open-circuit voltage, fill factor, and maximum power density highlight maximum photovoltaic efficiency (<span><math><mrow><msub><mi>η</mi><mi>max</mi></msub></mrow></math></span>) for Sc<sub>2</sub>CFBr (23.83 %) followed by Sc<sub>2</sub>CFCl (20.22 %), Sc<sub>2</sub>CHCl (19.41 %), and Sc<sub>2</sub>CHF (17.96 %) compounds. Extending the analysis, a dataset of 562 Janus materials is screened and refined to 343 candidates with optimal photovoltaic band gaps through confusion matrix analysis. Correlation between key feature descriptors and target variable <span><math><mrow><msub><mi>η</mi><mi>max</mi></msub></mrow></math></span> have been extracted using Pearson correlation heatmap. Ten ML algorithms, including five deep learning and five shallow learning models, are employed. The hybrid model integrating Convolutional Neural Network and Kernel Ridge Regressor exhibits superior predictive performance of <span><math><mrow><msub><mi>η</mi><mi>max</mi></msub></mrow></math></span> with R<sup>2</sup> values 0.96 (training) and 0.95 (testing). This study demonstrates the efficacy of ML, especially deep-shallow unified model, in predicting <span><math><mrow><msub><mi>η</mi><mi>max</mi></msub></mrow></math></span> of Janus materials which may bear promising applications towards next-generation high-efficiency and sustainable photovoltaics.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 114010"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825006117","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper reports a combined first-principles density functional theory (DFT) and machine learning (ML) study to predict the photovoltaic efficiency of two-dimensional Janus materials. Initially, the electronic and optical properties of four Janus systems Sc2CFBr, Sc2CFCl, Sc2CHCl and Sc2CHF are investigated using DFT. All four compounds exhibit indirect semiconducting behaviour with HSE06 band gaps ranging from 1.61 to 1.88 eV and strong visible light absorption. The associated average charge density, effective mass of charge carriers, and exciton binding energy have also been estimated. The photovoltaic performance parameters including short-circuit current density, open-circuit voltage, fill factor, and maximum power density highlight maximum photovoltaic efficiency (ηmax) for Sc2CFBr (23.83 %) followed by Sc2CFCl (20.22 %), Sc2CHCl (19.41 %), and Sc2CHF (17.96 %) compounds. Extending the analysis, a dataset of 562 Janus materials is screened and refined to 343 candidates with optimal photovoltaic band gaps through confusion matrix analysis. Correlation between key feature descriptors and target variable ηmax have been extracted using Pearson correlation heatmap. Ten ML algorithms, including five deep learning and five shallow learning models, are employed. The hybrid model integrating Convolutional Neural Network and Kernel Ridge Regressor exhibits superior predictive performance of ηmax with R2 values 0.96 (training) and 0.95 (testing). This study demonstrates the efficacy of ML, especially deep-shallow unified model, in predicting ηmax of Janus materials which may bear promising applications towards next-generation high-efficiency and sustainable photovoltaics.

Abstract Image

预测二维Janus材料在太阳能收集中的光伏效率:结合第一性原理和机器学习研究
本文报道了一项结合第一性原理密度泛函理论(DFT)和机器学习(ML)的研究,以预测二维Janus材料的光伏效率。首先,利用离散傅立叶变换研究了四种Janus体系Sc2CFBr、Sc2CFCl、Sc2CHCl和Sc2CHF的电子和光学性质。四种化合物均表现出间接半导体行为,HSE06带隙在1.61 ~ 1.88 eV之间,具有较强的可见光吸收。对相关的平均电荷密度、载流子的有效质量和激子结合能也进行了估计。光伏性能参数包括短路电流密度、开路电压、填充因子和最大功率密度,其中Sc2CFBr化合物的光伏效率最大(ηmax)为23.83%,其次是Sc2CFCl(20.22%)、Sc2CHCl(19.41%)和Sc2CHF(17.96%)化合物。扩展分析,通过混淆矩阵分析,筛选562种Janus材料的数据集,并将其细化为343种具有最佳光伏带隙的候选材料。利用Pearson相关热图提取了关键特征描述符与目标变量ηmax之间的相关性。采用了10种ML算法,包括5种深度学习模型和5种浅学习模型。结合卷积神经网络和Kernel Ridge regression的混合模型的ηmax预测效果较好,训练和检验的R2分别为0.96和0.95。该研究证明了ML,特别是深浅统一模型在预测Janus材料的ηmax方面的有效性,该模型在下一代高效可持续光伏发电中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信