Understanding the molecular differences in partitioning of higher- and lower-valent counterions in densely charged cation exchange membranes

IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yvonne Voon, Zi Wei Ng, K.B. Goh
{"title":"Understanding the molecular differences in partitioning of higher- and lower-valent counterions in densely charged cation exchange membranes","authors":"Yvonne Voon,&nbsp;Zi Wei Ng,&nbsp;K.B. Goh","doi":"10.1016/j.desal.2025.119463","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing metal ion recycling necessitates a fundamental understanding of competitive <em>multivalent</em> ion sorption in ion exchange membranes, particularly at the molecular scale. Here, we develop a molecular theory to systematically quantify sorption forces driving the partitioning of counterions with distinct valencies (e.g., trivalent/monovalent and trivalent/divalent pairs). Unlike prior studies, we resolve spatially dependent sorption forces under the landscape of condensation phenomena, revealing how dielectric, electrical, and osmotic forces synergistically govern competitive ion partitioning. Decoupling the molecular-level mobile ion sorption mechanisms demonstrates that Donnan and dielectric effects modulate macroscale partitioning trends. Strikingly, at the polymer-chain level, condensed trivalent counterions remain largely invariant to bulk solution concentration changes, mostly equilibrating in that state. Our theory is validated against data, successfully replicating global partitioning equilibria between binary salt solutions and membranes while predicting condensed-phase ion fractions. Collectively, this work establishes a chain-to-membrane multilevel framework that bridges macroscopic sorption behavior with molecular interactions, offering predictive insights for tailoring ion exchange membranes, for instance, in rare metal recovery.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"618 ","pages":"Article 119463"},"PeriodicalIF":9.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425009397","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing metal ion recycling necessitates a fundamental understanding of competitive multivalent ion sorption in ion exchange membranes, particularly at the molecular scale. Here, we develop a molecular theory to systematically quantify sorption forces driving the partitioning of counterions with distinct valencies (e.g., trivalent/monovalent and trivalent/divalent pairs). Unlike prior studies, we resolve spatially dependent sorption forces under the landscape of condensation phenomena, revealing how dielectric, electrical, and osmotic forces synergistically govern competitive ion partitioning. Decoupling the molecular-level mobile ion sorption mechanisms demonstrates that Donnan and dielectric effects modulate macroscale partitioning trends. Strikingly, at the polymer-chain level, condensed trivalent counterions remain largely invariant to bulk solution concentration changes, mostly equilibrating in that state. Our theory is validated against data, successfully replicating global partitioning equilibria between binary salt solutions and membranes while predicting condensed-phase ion fractions. Collectively, this work establishes a chain-to-membrane multilevel framework that bridges macroscopic sorption behavior with molecular interactions, offering predictive insights for tailoring ion exchange membranes, for instance, in rare metal recovery.

Abstract Image

了解高、低价反离子在密集带电阳离子交换膜中分配的分子差异
优化金属离子回收需要对离子交换膜中竞争性多价离子吸附的基本理解,特别是在分子尺度上。在这里,我们发展了一种分子理论来系统地量化驱动不同价对(例如,三价/单价和三价/二价对)的反离子分配的吸附力。与之前的研究不同,我们在冷凝现象的背景下解决了空间依赖的吸附力,揭示了介电、电和渗透力如何协同控制竞争性离子分配。解耦的分子水平移动离子吸附机制表明,唐南效应和介电效应调节宏观尺度的分配趋势。引人注目的是,在聚合物链水平上,缩合的三价反离子在很大程度上保持不变,而不是随体积溶液浓度的变化而变化,大多数情况下在该状态下保持平衡。我们的理论是根据数据验证的,成功地复制了二元盐溶液和膜之间的整体分配平衡,同时预测了凝聚相离子分数。总的来说,这项工作建立了一个链到膜的多层框架,将宏观吸附行为与分子相互作用联系起来,为定制离子交换膜提供了预测性的见解,例如,在稀有金属回收中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信