{"title":"Reversibility and entropy in bubbling fluidized beds: A recurrence-based analysis","authors":"Reza Zarghami , Mousa Mohammadpourfard , Gülden Gökçen Akkurt","doi":"10.1016/j.powtec.2025.121778","DOIUrl":null,"url":null,"abstract":"<div><div>Nonlinear time series analysis techniques were applied to characterize bubbling fluidization. The delay method was used to reconstruct the state space attractor and analyze the reconstructed state space. The experiments were carried out in a laboratory-scale fluidized bed, operated under ambient conditions and with various sizes of particles, settled bed heights, measurement heights, and superficial gas velocities. The reversibility of the gas-solid fluidized bed hydrodynamics was investigated using pressure fluctuations by recurrence plot analysis. The anti-diagonal lines of the recurrence plot (RP) were regarded as a measure of reversibility. It was shown that the reversibility versus gas velocity has a concave shape in the bubbling regime. The highest reversibility occurs at velocities remarkably lower than the turbulent transition velocity. In addition, reversibility increases as the size of the particles increases. The Kolmogorov entropy was also estimated to confirm the reversibility analysis in the state space domain. In addition, the average cycle frequency and wideband energy in the frequency domain were also used to clarify the results in the state domain. It was found that a minimum in average cycle frequency, wideband energy, and entropy with an increase in the velocity corresponds to the transition between macrostructures and finer structures of the fluidization system. This minimum was primarily found in the macrostructures of the bubbling fluidization system. These findings can provide a practical tool for the optimal design and operation of the fluidized bed.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"469 ","pages":"Article 121778"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025011738","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear time series analysis techniques were applied to characterize bubbling fluidization. The delay method was used to reconstruct the state space attractor and analyze the reconstructed state space. The experiments were carried out in a laboratory-scale fluidized bed, operated under ambient conditions and with various sizes of particles, settled bed heights, measurement heights, and superficial gas velocities. The reversibility of the gas-solid fluidized bed hydrodynamics was investigated using pressure fluctuations by recurrence plot analysis. The anti-diagonal lines of the recurrence plot (RP) were regarded as a measure of reversibility. It was shown that the reversibility versus gas velocity has a concave shape in the bubbling regime. The highest reversibility occurs at velocities remarkably lower than the turbulent transition velocity. In addition, reversibility increases as the size of the particles increases. The Kolmogorov entropy was also estimated to confirm the reversibility analysis in the state space domain. In addition, the average cycle frequency and wideband energy in the frequency domain were also used to clarify the results in the state domain. It was found that a minimum in average cycle frequency, wideband energy, and entropy with an increase in the velocity corresponds to the transition between macrostructures and finer structures of the fluidization system. This minimum was primarily found in the macrostructures of the bubbling fluidization system. These findings can provide a practical tool for the optimal design and operation of the fluidized bed.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.