Experimental Nusselt number correlations for heat transfer of a single spherical particle in turbulent flow

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Huina Guo , Xinde Zhang , Lele Feng , Yuanyi Wu , Yuxin Wu
{"title":"Experimental Nusselt number correlations for heat transfer of a single spherical particle in turbulent flow","authors":"Huina Guo ,&nbsp;Xinde Zhang ,&nbsp;Lele Feng ,&nbsp;Yuanyi Wu ,&nbsp;Yuxin Wu","doi":"10.1016/j.ijheatmasstransfer.2025.127939","DOIUrl":null,"url":null,"abstract":"<div><div>Gas-solid heat transfer is crucial in industrial reactors. The classic Ranz-Marshall correlation works well under low turbulence intensity but underestimates the Nusselt number <em>Nu</em> when turbulent fluctuations match or exceed the mean flow. This study delves into the heat transfer of a single spherical particle in turbulent flows through extensive experiments and develops unified Nusselt number correlations. A custom-designed four-fan turbulent heating setup is employed to create homogeneous and isotropic turbulence region (<em>u</em><sub>rms</sub> ≤ 4.18 m/s, integral length scale <em>L</em> ≈ 14 mm), effectively isolating the pure turbulent effect. By conducting heating experiments on a single copper sphere at different furnace temperatures and turbulent fluctuation velocities, and employing the lumped-parameter method to measure particle temperature, the Nusselt number is inversely determined via a zero-dimensional energy balance model. The results indicate a sub-linear relationship between the Nusselt number and the particle turbulent Reynolds number <em>Re</em><sub>t</sub>. An improved correlation for pure turbulent environments is derived from experimental data, as <span><math><mrow><mi>N</mi><mi>u</mi><mspace></mspace><mrow><mo>=</mo><mspace></mspace><mn>2</mn><mo>+</mo><mn>0</mn></mrow><mrow><mo>.</mo><mn>6</mn></mrow><mi>R</mi><msubsup><mi>e</mi><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mi>P</mi><msup><mi>r</mi><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mi>C</mi><mo>/</mo><mi>d</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>5</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><msub><mi>T</mi><mi>f</mi></msub><mo>/</mo><msub><mi>T</mi><mi>p</mi></msub></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></math></span>. Furthermore, a coupled correlation considering both mean flow and turbulent fluctuation is proposed, capable of seamlessly transitioning between mean flow-dominated and turbulence-dominated regimes via a nonlinear composite formulation. Comparisons with the references validates the proposed correlations with an acceptable error of 10 % over a wide Reynolds range. This research highlights the significant role of turbulent fluctuations in enhancing heat transfer under high turbulence intensity. The developed correlations provide a more accurate tool for predicting <em>Nu</em> in complex gas-solid flows, aiding in understanding and modeling heat and mass transfer processes in turbulent multiphase flows, and offering critical guidance for subsequent reaction processes in industrial combustors.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"256 ","pages":"Article 127939"},"PeriodicalIF":5.8000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025012748","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gas-solid heat transfer is crucial in industrial reactors. The classic Ranz-Marshall correlation works well under low turbulence intensity but underestimates the Nusselt number Nu when turbulent fluctuations match or exceed the mean flow. This study delves into the heat transfer of a single spherical particle in turbulent flows through extensive experiments and develops unified Nusselt number correlations. A custom-designed four-fan turbulent heating setup is employed to create homogeneous and isotropic turbulence region (urms ≤ 4.18 m/s, integral length scale L ≈ 14 mm), effectively isolating the pure turbulent effect. By conducting heating experiments on a single copper sphere at different furnace temperatures and turbulent fluctuation velocities, and employing the lumped-parameter method to measure particle temperature, the Nusselt number is inversely determined via a zero-dimensional energy balance model. The results indicate a sub-linear relationship between the Nusselt number and the particle turbulent Reynolds number Ret. An improved correlation for pure turbulent environments is derived from experimental data, as Nu=2+0.6Ret1/2Pr1/3(C/d)1/5(Tf/Tp)1/5. Furthermore, a coupled correlation considering both mean flow and turbulent fluctuation is proposed, capable of seamlessly transitioning between mean flow-dominated and turbulence-dominated regimes via a nonlinear composite formulation. Comparisons with the references validates the proposed correlations with an acceptable error of 10 % over a wide Reynolds range. This research highlights the significant role of turbulent fluctuations in enhancing heat transfer under high turbulence intensity. The developed correlations provide a more accurate tool for predicting Nu in complex gas-solid flows, aiding in understanding and modeling heat and mass transfer processes in turbulent multiphase flows, and offering critical guidance for subsequent reaction processes in industrial combustors.
紊流中单球面颗粒传热的实验努塞尔数关联
气固传热在工业反应器中起着至关重要的作用。经典的Ranz-Marshall相关在低湍流强度下工作良好,但当湍流波动匹配或超过平均流量时,它低估了努塞尔数Nu。本研究通过大量的实验研究了湍流中单个球形粒子的传热问题,并建立了统一的努塞尔数相关关系。采用定制的四扇湍流加热装置,形成均匀各向同性湍流区(湍流速度≤4.18 m/s,积分长度尺度L≈14 mm),有效隔离纯粹的湍流效应。通过对单个铜球在不同炉温和湍流波动速度下进行加热实验,采用集总参数法测量粒子温度,通过零维能量平衡模型反比确定努塞尔数。结果表明,Nusselt数与粒子湍流雷诺数Ret之间存在亚线性关系,在纯湍流环境下,Nu=2+0.6Ret1/2Pr1/3(C/d)1/5(Tf/Tp)1/5。在此基础上,提出了一种考虑平均流和湍流波动的耦合相关,通过非线性复合公式在平均流主导和湍流主导之间无缝转换。与参考文献的比较验证了所提出的相关性,在较宽的雷诺数范围内误差可接受为10%。本研究强调了湍流波动在高湍流强度下增强换热的重要作用。所建立的相关关系为预测复杂气固流动中的Nu提供了更准确的工具,有助于理解和模拟湍流多相流中的传热传质过程,并为工业燃烧室的后续反应过程提供关键指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信