Xueyu Wu , YuQi Wang , Le Yuan , Lun Qi , Xiaolong Weng , Mei Bi , Ke Ren
{"title":"The irradiation damage mechanism and performance enhancement of thermochromic VO2 films under high-power laser irradiation","authors":"Xueyu Wu , YuQi Wang , Le Yuan , Lun Qi , Xiaolong Weng , Mei Bi , Ke Ren","doi":"10.1016/j.infrared.2025.106195","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium dioxide (VO<sub>2</sub>) is a phase-change material with tunable optical properties, demonstrates significant potential for smart laser protection applications. However, its practical implementation has been constrained by relatively low damage thresholds and insufficient laser irradiation resistance. This study employed atomic layer deposition (ALD) to fabricate both VO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>/VO<sub>2</sub> thin films, subsequently investigating their damage mechanisms and protective performance under 1060 nm laser irradiation. Key findings reveal that ALD-prepared VO<sub>2</sub> films exhibit exceptional optoelectronic response characteristics, achieving 75 % infrared transmittance modulation in the 3–5 μm wavelength range accompanied by five orders of magnitude resistance variation. Nevertheless, laser-induced oxidation was identified as the primary degradation mechanism, causing up to 89.7 % deterioration in protective performance. The integration of a 10 nm Al<sub>2</sub>O<sub>3</sub> protective layer not only preserved the desirable optical response properties but also reduced performance degradation to merely 6.9 % under identical irradiation conditions while extending service life by over fourfold. These results present a novel approach for developing high-threshold laser protective film.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"152 ","pages":"Article 106195"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525004888","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium dioxide (VO2) is a phase-change material with tunable optical properties, demonstrates significant potential for smart laser protection applications. However, its practical implementation has been constrained by relatively low damage thresholds and insufficient laser irradiation resistance. This study employed atomic layer deposition (ALD) to fabricate both VO2 and Al2O3/VO2 thin films, subsequently investigating their damage mechanisms and protective performance under 1060 nm laser irradiation. Key findings reveal that ALD-prepared VO2 films exhibit exceptional optoelectronic response characteristics, achieving 75 % infrared transmittance modulation in the 3–5 μm wavelength range accompanied by five orders of magnitude resistance variation. Nevertheless, laser-induced oxidation was identified as the primary degradation mechanism, causing up to 89.7 % deterioration in protective performance. The integration of a 10 nm Al2O3 protective layer not only preserved the desirable optical response properties but also reduced performance degradation to merely 6.9 % under identical irradiation conditions while extending service life by over fourfold. These results present a novel approach for developing high-threshold laser protective film.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.