The algebraic and geometric classification of right alternative and semi-alternative algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Hani Abdelwahab , Ivan Kaygorodov , Roman Lubkov
{"title":"The algebraic and geometric classification of right alternative and semi-alternative algebras","authors":"Hani Abdelwahab ,&nbsp;Ivan Kaygorodov ,&nbsp;Roman Lubkov","doi":"10.1016/j.jalgebra.2025.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>The algebraic and geometric classifications of complex 3-dimensional right alternative and semi-alternative algebras are given. As corollaries, we have the algebraic and geometric classification of complex 3-dimensional <span><math><mi>perm</mi></math></span>, binary <span><math><mi>perm</mi></math></span>, associative, <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-, binary <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-, and assosymmetric algebras. In particular, we proved that the first example of non-associative right alternative algebras appears in dimension 3; the first example of non-associative assosymmetric algebras appears in dimension 3; the first example of non-assosymmetric semi-alternative algebras appears in dimension 4; the first example of binary <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-algebras, which is non-<span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-, appears in dimension 4; the first example of right alternative algebras, which is not binary <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-, appears in dimension 4; the first example of binary <span><math><mi>perm</mi></math></span> non-<span><math><mi>perm</mi></math></span> algebras appears in dimension 4. As a byproduct, we give an easier answer to problem 2.109 from the Dniester Notebook, previously resolved by Shestakov and Arenas.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 792-824"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005563","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The algebraic and geometric classifications of complex 3-dimensional right alternative and semi-alternative algebras are given. As corollaries, we have the algebraic and geometric classification of complex 3-dimensional perm, binary perm, associative, (1,1)-, binary (1,1)-, and assosymmetric algebras. In particular, we proved that the first example of non-associative right alternative algebras appears in dimension 3; the first example of non-associative assosymmetric algebras appears in dimension 3; the first example of non-assosymmetric semi-alternative algebras appears in dimension 4; the first example of binary (1,1)-algebras, which is non-(1,1)-, appears in dimension 4; the first example of right alternative algebras, which is not binary (1,1)-, appears in dimension 4; the first example of binary perm non-perm algebras appears in dimension 4. As a byproduct, we give an easier answer to problem 2.109 from the Dniester Notebook, previously resolved by Shestakov and Arenas.
右替代代数和半替代代数的代数和几何分类
给出了复三维右可选代数和半可选代数的代数和几何分类。作为推论,我们得到了复三维perm、二元perm、结合型、(- 1,1)-、二元(- 1,1)-和副对称代数的代数和几何分类。特别地,我们证明了第一个非结合右替代代数的例子出现在3维;非结合对称代数的第一个例子出现在3维;第一个非协对称半可选代数的例子出现在4维;二进制(- 1,1)-代数的第一个例子是非-(- 1,1)-,出现在4维;右替代代数的第一个例子,它不是二进制(- 1,1)-,出现在4维;二元perm -非perm代数的第一个例子出现在维4中。作为副产品,我们给出了先前由Shestakov和Arenas解决的Dniester Notebook中的2.109问题的更简单的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信