Entropy optimization of micropolar nanofluid flow through a porous microchannel with Darcy–Forchheimer phenomenon using differential transform method: An ANOVA–Taguchi approach

Q1 Chemical Engineering
Pradeep Kumar , Guruprasad M․N․ , Felicita Almeida , Youssef El Khatib , Qasem Al-Mdallal
{"title":"Entropy optimization of micropolar nanofluid flow through a porous microchannel with Darcy–Forchheimer phenomenon using differential transform method: An ANOVA–Taguchi approach","authors":"Pradeep Kumar ,&nbsp;Guruprasad M․N․ ,&nbsp;Felicita Almeida ,&nbsp;Youssef El Khatib ,&nbsp;Qasem Al-Mdallal","doi":"10.1016/j.ijft.2025.101428","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the impact of key physical parameters on entropy generation and thermal behaviour in a micropolar nanofluid flowing through a horizontal microchannel using the ANOVA–Taguchi method. The Buongiorno model is employed to represent nanoparticle transport mechanisms accurately, including Brownian motion and thermophoresis. The analysis also incorporates the effects of magnetic field, fluid suction/injection, and wall boundary conditions. The presence of a porous medium is modelled using the Darcy–Forchheimer theory, while micropolar fluid theory accounts for microstructural effects through microrotation and microinertia. The resulting nonlinear governing equations are resolved numerically using the fourth–fifth order Runge–Kutta–Fehlberg method and validated via the differential transform method to ensure accuracy. The findings indicate that the material parameter increases microrotation in the upper region of the channel but reduces in the lower region, whereas the microinertia parameter exhibits the opposite trend. Higher values of the material parameter also lead to reduced entropy generation, indicating improved thermodynamic performance. Optimization analysis identifies a maximum thermal transfer rate of 1.09233 for the system. According to the ANOVA results, the Prandtl number is the most influential parameter, contributing 79.73% to the total effect on entropy generation, while the Darcy number has a minimal influence of 0.07%. These results highlight the significant role of fluid thermal properties and microstructural parameters in controlling entropy generation and heat transfer in micropolar nanofluid flows through porous microchannels.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101428"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272500374X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the impact of key physical parameters on entropy generation and thermal behaviour in a micropolar nanofluid flowing through a horizontal microchannel using the ANOVA–Taguchi method. The Buongiorno model is employed to represent nanoparticle transport mechanisms accurately, including Brownian motion and thermophoresis. The analysis also incorporates the effects of magnetic field, fluid suction/injection, and wall boundary conditions. The presence of a porous medium is modelled using the Darcy–Forchheimer theory, while micropolar fluid theory accounts for microstructural effects through microrotation and microinertia. The resulting nonlinear governing equations are resolved numerically using the fourth–fifth order Runge–Kutta–Fehlberg method and validated via the differential transform method to ensure accuracy. The findings indicate that the material parameter increases microrotation in the upper region of the channel but reduces in the lower region, whereas the microinertia parameter exhibits the opposite trend. Higher values of the material parameter also lead to reduced entropy generation, indicating improved thermodynamic performance. Optimization analysis identifies a maximum thermal transfer rate of 1.09233 for the system. According to the ANOVA results, the Prandtl number is the most influential parameter, contributing 79.73% to the total effect on entropy generation, while the Darcy number has a minimal influence of 0.07%. These results highlight the significant role of fluid thermal properties and microstructural parameters in controlling entropy generation and heat transfer in micropolar nanofluid flows through porous microchannels.
微极性纳米流体通过多孔微通道的熵优化及Darcy-Forchheimer现象的微分变换方法:ANOVA-Taguchi方法
本研究使用ANOVA-Taguchi方法系统地研究了微极性纳米流体流过水平微通道时关键物理参数对熵生成和热行为的影响。采用Buongiorno模型准确地描述了纳米颗粒的输运机制,包括布朗运动和热泳动。该分析还考虑了磁场、流体吸入/注入和壁面边界条件的影响。多孔介质的存在是用Darcy-Forchheimer理论建模的,而微极流体理论通过微旋转和微惯性来解释微观结构效应。采用四五阶龙格-库塔-费贝格法对非线性控制方程进行数值求解,并通过微分变换法进行验证,以保证精度。结果表明,材料参数增加了通道上部的微旋度,降低了通道下部的微旋度,而微惯量参数则呈现相反的趋势。较高的材料参数值也会导致熵生成减少,表明热力学性能得到改善。优化分析表明,该系统的最大传热率为1.09233。方差分析结果显示,Prandtl数是影响最大的参数,对熵生成的总影响贡献了79.73%,而Darcy数的影响最小,为0.07%。这些结果强调了流体热性质和微观结构参数在控制微极性纳米流体通过多孔微通道时的熵产和传热中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信