{"title":"Irreducible factorizations of polynomials xpk+1−bx+b over a finite field","authors":"Xue Jia , Fengwei Li , Huan Sun , Qin Yue","doi":"10.1016/j.ffa.2025.102740","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate polynomials of the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>b</mi></math></span>, where <span><math><mn>0</mn><mo>≠</mo><mi>b</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, <em>p</em> is a prime, and <em>k</em> divides <em>n</em>. By introducing a new approach based on the projective general linear group, we show that the number of zeros of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> belongs to <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><mn>1</mn><mo>}</mo></math></span>, and provide explicit criteria on <em>b</em> for each case. We also count the number of such polynomials corresponding to each possible number of zeros. Moreover, for the cases where <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> has at least one zero, we determine its complete irreducible factorization over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102740"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001704","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate polynomials of the form , where , p is a prime, and k divides n. By introducing a new approach based on the projective general linear group, we show that the number of zeros of in belongs to , and provide explicit criteria on b for each case. We also count the number of such polynomials corresponding to each possible number of zeros. Moreover, for the cases where has at least one zero, we determine its complete irreducible factorization over .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.