Jinjie Wang , Qile Ren , Honggang Wen , Zuchao Zhu , Xiaojun Li
{"title":"Energy conversion and loss characteristics of multi-stage cryogenic submerged pumps based on power density evolution model","authors":"Jinjie Wang , Qile Ren , Honggang Wen , Zuchao Zhu , Xiaojun Li","doi":"10.1016/j.cryogenics.2025.104211","DOIUrl":null,"url":null,"abstract":"<div><div>Cryogenic submerged pumps (CSPs) are imperative for the efficient transport of cryogenic fluids; however, their multi-stage energy conversion mechanisms remain insufficiently understood under extreme operating conditions. This study aims to quantitatively elucidate the internal flow field and energy transfer characteristics of a two-stage CSP by developing an energy conversion and loss analysis method based on power density distribution. This method integrates high-fidelity numerical simulations and experimental validation using liquid nitrogen. The results reveal that the first-stage impeller is highly sensitive to inlet flow disturbances under off-design conditions, with local flow separation increasing turbulence intensity and energy dissipation; the deviation proportion (<em>DP</em>) in certain channels exceeds 15%. Conversely, the second-stage impeller exhibits a more uniform power density distribution and maintains stable outlet pressure even at 1.4<em>Q</em><sub>d</sub>, where its kinetic energy increment extends to a streamline distance of 0.36 compared to 0.2 in the first stage. Guide vanes account for 65 % of the total turbulent dissipation power and 59 % of wall friction loss, with peak kinetic-to-pressure energy conversion efficiency occurring at a streamline distance of 0.3. Both the impeller and guide vanes exhibit similar energy transfer processes: power density increases slightly at the inlet, decreases gradually along the channel, and rebounds near the outlet. These findings clarify inter-stage synergy and loss mechanisms while providing quantitative design guidance for optimising impeller–guide vane matching, thereby improving overall efficiency and expanding the high-efficiency operating range of multi-stage CSPs.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"152 ","pages":"Article 104211"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525001900","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cryogenic submerged pumps (CSPs) are imperative for the efficient transport of cryogenic fluids; however, their multi-stage energy conversion mechanisms remain insufficiently understood under extreme operating conditions. This study aims to quantitatively elucidate the internal flow field and energy transfer characteristics of a two-stage CSP by developing an energy conversion and loss analysis method based on power density distribution. This method integrates high-fidelity numerical simulations and experimental validation using liquid nitrogen. The results reveal that the first-stage impeller is highly sensitive to inlet flow disturbances under off-design conditions, with local flow separation increasing turbulence intensity and energy dissipation; the deviation proportion (DP) in certain channels exceeds 15%. Conversely, the second-stage impeller exhibits a more uniform power density distribution and maintains stable outlet pressure even at 1.4Qd, where its kinetic energy increment extends to a streamline distance of 0.36 compared to 0.2 in the first stage. Guide vanes account for 65 % of the total turbulent dissipation power and 59 % of wall friction loss, with peak kinetic-to-pressure energy conversion efficiency occurring at a streamline distance of 0.3. Both the impeller and guide vanes exhibit similar energy transfer processes: power density increases slightly at the inlet, decreases gradually along the channel, and rebounds near the outlet. These findings clarify inter-stage synergy and loss mechanisms while providing quantitative design guidance for optimising impeller–guide vane matching, thereby improving overall efficiency and expanding the high-efficiency operating range of multi-stage CSPs.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics