Switching time-/event-triggered control of cyber–physical systems under hybrid attacks and finite bit rates

IF 2.5 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Chenyi Wang, Qiang Ling, Yuan Liu
{"title":"Switching time-/event-triggered control of cyber–physical systems under hybrid attacks and finite bit rates","authors":"Chenyi Wang,&nbsp;Qiang Ling,&nbsp;Yuan Liu","doi":"10.1016/j.sysconle.2025.106264","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the secure control of quantized cyber–physical systems (CPSs) under hybrid attacks, including denial-of-service (DoS) attacks and deception attacks. The joint effects of hybrid attacks and finite bit rate constraints may induce quantization saturation and sensor–controller information mismatch. To avoid quantization saturation, we propose a dynamic bit rate (DBR) quantization strategy and a switching time-/event-triggering (STET) strategy. Compared to existing methods, our strategies can reduce the required stabilizing bit rate while maintaining system resilience against attacks. Moreover, a novel state estimate compensation strategy is proposed to resolve the sensor–controller information mismatch. Sufficient stabilizing bit rate conditions are derived. An example system is further simulated to verify the effectiveness of the proposed strategies.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"205 ","pages":"Article 106264"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125002464","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the secure control of quantized cyber–physical systems (CPSs) under hybrid attacks, including denial-of-service (DoS) attacks and deception attacks. The joint effects of hybrid attacks and finite bit rate constraints may induce quantization saturation and sensor–controller information mismatch. To avoid quantization saturation, we propose a dynamic bit rate (DBR) quantization strategy and a switching time-/event-triggering (STET) strategy. Compared to existing methods, our strategies can reduce the required stabilizing bit rate while maintaining system resilience against attacks. Moreover, a novel state estimate compensation strategy is proposed to resolve the sensor–controller information mismatch. Sufficient stabilizing bit rate conditions are derived. An example system is further simulated to verify the effectiveness of the proposed strategies.
混合攻击和有限比特率下网络物理系统的切换时间/事件触发控制
本文研究了量子化网络物理系统(cps)在拒绝服务(DoS)攻击和欺骗攻击等混合攻击下的安全控制。混合攻击和有限比特率约束的共同作用可能导致量化饱和和传感器-控制器信息失配。为了避免量化饱和,我们提出了动态比特率(DBR)量化策略和切换时间/事件触发(STET)策略。与现有方法相比,我们的策略可以降低所需的稳定比特率,同时保持系统抗攻击的弹性。此外,提出了一种新的状态估计补偿策略来解决传感器控制器信息不匹配的问题。给出了稳定比特率的充分条件。最后通过实例系统仿真验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信