Linear stability of pipe flow with magnetic field and internal heat source: A non-Darcian approach

IF 6.4 2区 工程技术 Q1 MECHANICS
Ashok Kumar , Akshay Saini , Ashok Kumar , Anup Singh Negi
{"title":"Linear stability of pipe flow with magnetic field and internal heat source: A non-Darcian approach","authors":"Ashok Kumar ,&nbsp;Akshay Saini ,&nbsp;Ashok Kumar ,&nbsp;Anup Singh Negi","doi":"10.1016/j.icheatmasstransfer.2025.109808","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the stability of convective flow in a vertical pipe with a magnetic field, driven by an internal heat source. To formulate governing equations, the non-Darcy Brinkman Forchheimer extended model has been used and solved numerically by the Chebyshev spectral collocation method (CSCM). Stability analysis is conducted for various fluids (mercury and liquids) corresponding to Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>) of 0.0248 and 7, showing that increasing the magnetic field enhances the stability region, with varying effects on critical wave number (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) and critical Grashof number (<span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>) depending on <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>. The analysis reveals that the magnetic field increases the velocity profile in the central region, while decreasing it near the boundary, with the velocity profile near the boundary increasing with the Darcy number (<span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span>). Increasing Hartmann number (<span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>) significantly stabilizes the flow by suppressing convective motion through Lorentz forces. For <span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0248</mn></mrow></math></span>, <span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> increases from <span><math><mrow><mn>6</mn><mo>.</mo><mn>75</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> at <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> to <span><math><mrow><mn>7</mn><mo>.</mo><mn>03</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> at <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>10</mn></mrow></math></span>, indicating requirement of higher buoyancy to trigger convection. Similarly, for <span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> rises from <span><math><mrow><mn>2</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>40</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. Reducing <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> enhances porous resistance, resulting in weaker secondary vortices and diminished convective transport, with secondary flow intensity dropping by over 60% as <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> decreases from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Low-<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> fluids exhibit stronger stabilization under magnetic damping compared to high-<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> fluids. Visualizations of the secondary flow in a circular cross-section, showcasing the disturbance velocities (radial, circumferential, and axial) and temperature for various <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> in both absence and presence of a magnetic field. Additionally, the stream function, streamwise velocity, and temperature are depicted in the meridional cross-section of the pipe at critical parameters, providing a comprehensive understanding of the flow dynamics.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"169 ","pages":"Article 109808"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325012345","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the stability of convective flow in a vertical pipe with a magnetic field, driven by an internal heat source. To formulate governing equations, the non-Darcy Brinkman Forchheimer extended model has been used and solved numerically by the Chebyshev spectral collocation method (CSCM). Stability analysis is conducted for various fluids (mercury and liquids) corresponding to Prandtl numbers (Pr) of 0.0248 and 7, showing that increasing the magnetic field enhances the stability region, with varying effects on critical wave number (kc) and critical Grashof number (Grc) depending on Pr. The analysis reveals that the magnetic field increases the velocity profile in the central region, while decreasing it near the boundary, with the velocity profile near the boundary increasing with the Darcy number (Da). Increasing Hartmann number (Ha) significantly stabilizes the flow by suppressing convective motion through Lorentz forces. For Da=101 and Pr=0.0248, Grc increases from 6.75×104 at Ha=0 to 7.03×105 at Ha=10, indicating requirement of higher buoyancy to trigger convection. Similarly, for Da=102, Grc rises from 2.15×105 to 2.40×106. Reducing Da enhances porous resistance, resulting in weaker secondary vortices and diminished convective transport, with secondary flow intensity dropping by over 60% as Da decreases from 101 to 102. Low-Pr fluids exhibit stronger stabilization under magnetic damping compared to high-Pr fluids. Visualizations of the secondary flow in a circular cross-section, showcasing the disturbance velocities (radial, circumferential, and axial) and temperature for various Da in both absence and presence of a magnetic field. Additionally, the stream function, streamwise velocity, and temperature are depicted in the meridional cross-section of the pipe at critical parameters, providing a comprehensive understanding of the flow dynamics.
磁场和内部热源作用下管道流动的线性稳定性:一种非达西方法
本研究考察了由内部热源驱动的具有磁场的垂直管道中对流流动的稳定性。采用非达西Brinkman - Forchheimer扩展模型,采用Chebyshev谱配点法(CSCM)进行数值求解。对普朗特数(Pr)分别为0.0248和7的各种流体(汞和液体)进行了稳定性分析,结果表明,磁场的增加增强了稳定区,对临界波数(kc)和临界格拉什夫数(Grc)的影响随Pr的不同而不同。分析表明,磁场使中心区域的速度剖面增大,而在边界附近的速度剖面减小;边界附近的速度剖面随达西数(Da)的增大而增大。增加哈特曼数(Ha)可以通过洛伦兹力抑制对流运动来显著稳定流动。当Da=10−1,Pr=0.0248时,Grc从Ha=0时的6.75×104增加到Ha=10时的7.03×105,说明需要更高的浮力来触发对流。同样,当Da=10−2时,Grc从2.15×105上升到2.40×106。当Da从10−1减小到10−2时,孔隙阻力增大,二次涡减弱,对流输运减弱,二次流强度下降60%以上。与高pr流体相比,低pr流体在磁阻尼作用下表现出更强的稳定性。二次流在圆形截面上的可视化,显示了在没有磁场和存在磁场的情况下,不同Da的扰动速度(径向、周向和轴向)和温度。此外,在关键参数下,流函数、流向速度和温度在管道的子午截面中被描绘出来,从而提供了对流动动力学的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信