The spectral eigenvalue set and Beurling dimension on self-similar measures

IF 2.3 1区 数学 Q1 MATHEMATICS
Lu Zheng-Yi
{"title":"The spectral eigenvalue set and Beurling dimension on self-similar measures","authors":"Lu Zheng-Yi","doi":"10.1016/j.matpur.2025.103809","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study harmonic analysis in self-similar measures. A set <span><math><mi>A</mi></math></span> is called a <em>spectral eigenvalue set</em> of <em>μ</em> if there exists <span><math><mi>Λ</mi><mo>⊂</mo><mi>R</mi></math></span> such that the family <span><math><mo>{</mo><mi>a</mi><mi>Λ</mi><mo>:</mo><mi>a</mi><mo>∈</mo><mi>A</mi><mo>}</mo></math></span> are spectra for <em>μ</em>. Given a Hadamard triple <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, Łaba and Wang <span><span>[33]</span></span> proved that the associated self-similar measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>D</mi></mrow></msub></math></span> is spectral. We establish that the set<span><span><span><math><mi>T</mi><mo>=</mo><mo>{</mo><mi>t</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>t</mi><mi>L</mi><mo>)</mo><mtext> forms a Hadamard triple</mtext><mo>}</mo><mo>⊇</mo><mo>{</mo><mi>p</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>}</mo></math></span></span></span> constitutes a spectral eigenvalue set for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>D</mi></mrow></msub></math></span>. Furthermore, we demonstrate that for any prescribed Beurling dimension <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>#</mi><mi>D</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>q</mi></mrow></mfrac><mo>]</mo></math></span>, the corresponding spectra have the cardinality of the continuum. This result provides a complete answer to the question posed by Kong, Li and Wang <span><span>[30]</span></span>. As an application, we characterize the eigenvalue sets for <em>N</em>-Bernoulli convolutions, proving that <span><math><mi>A</mi></math></span> is an eigenvalue set if and only if <span><math><mi>A</mi><mo>⊆</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mi>T</mi></math></span> for some <span><math><mi>T</mi><mo>∈</mo><mi>T</mi></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103809"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001539","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study harmonic analysis in self-similar measures. A set A is called a spectral eigenvalue set of μ if there exists ΛR such that the family {aΛ:aA} are spectra for μ. Given a Hadamard triple (q,D,L), Łaba and Wang [33] proved that the associated self-similar measure μq,D is spectral. We establish that the setT={tZ:(q,D,tL) forms a Hadamard triple}{pZ:gcd(p,q)=1} constitutes a spectral eigenvalue set for μq,D. Furthermore, we demonstrate that for any prescribed Beurling dimension s[0,log#Dlogq], the corresponding spectra have the cardinality of the continuum. This result provides a complete answer to the question posed by Kong, Li and Wang [30]. As an application, we characterize the eigenvalue sets for N-Bernoulli convolutions, proving that A is an eigenvalue set if and only if A1TT for some TT.
自相似测度上的谱特征值集和伯林维数
本文主要研究自相似测度中的谐波分析。如果存在Λ∧R使得族{aΛ: A∈A}是μ的谱,则集合A称为μ的谱特征值集。给出一个Hadamard三重体(q,D,L), Łaba和Wang[33]证明了相关的自相似测度μq,D是谱的。我们建立了setT={t∈Z:(q,D,tL)构成一个Hadamard三重体}{p∈Z:gcd (p,q)=1}构成μq,D的谱特征值集。进一步证明了对于任意给定的Beurling维数s∈[0,log (#) log (q)],对应的谱具有连续统的基数性。这一结果为Kong, Li和Wang b[30]提出的问题提供了完整的答案。作为应用,我们对N-Bernoulli卷积的特征值集进行了刻画,证明了对于某T∈T, A是一个当且仅当A≠1TT的特征值集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信