Pathways of Conversion of Middle Distillate Hydrocarbons in Deep Catalytic Cracking to Produce Light Olefins

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-10-07 DOI:10.1021/acsomega.5c06758
Valentin R. Atlasov*, , , Timur A. Palankoev, , and , Konstantin I. Dement’ev, 
{"title":"Pathways of Conversion of Middle Distillate Hydrocarbons in Deep Catalytic Cracking to Produce Light Olefins","authors":"Valentin R. Atlasov*,&nbsp;, ,&nbsp;Timur A. Palankoev,&nbsp;, and ,&nbsp;Konstantin I. Dement’ev,&nbsp;","doi":"10.1021/acsomega.5c06758","DOIUrl":null,"url":null,"abstract":"<p >The relevance of cracking diesel fractions into light olefins is determined by the strategic need to transition from a fuel-based refinery model to a petrochemical-based refinery model, growing global demand for polymers, and environmental sustainability requirements. The aim of this work is to explore the possibility of the selective production of light olefins from diesel fraction hydrocarbons. The pathways of high-temperature catalytic cracking of individual hydrocarbons that simulate the composition of diesel fractions over catalysts containing zeolites of various types (Y, ZSM-5, and β) have been studied. Maximum selectivity for light olefins in the cracking of aliphatic and alkylaromatic hydrocarbons was achieved using catalysts with the lowest activity in hydrogen transfer reactions. Based on the cracking of tetraline, it was shown that at temperatures above 625 °C, the kinetic control of the reactions under deep cracking conditions is predominant, whereas at lower temperatures, the selectivity is controlled by thermodynamics. Light olefin selectivity in the case of substituted aromatic and naphthenic hydrocarbons strongly depends on the porous structure of the catalyst. Conversion pathways for different classes of hydrocarbons under deep catalytic cracking conditions are proposed.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 41","pages":"48761–48772"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c06758","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c06758","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The relevance of cracking diesel fractions into light olefins is determined by the strategic need to transition from a fuel-based refinery model to a petrochemical-based refinery model, growing global demand for polymers, and environmental sustainability requirements. The aim of this work is to explore the possibility of the selective production of light olefins from diesel fraction hydrocarbons. The pathways of high-temperature catalytic cracking of individual hydrocarbons that simulate the composition of diesel fractions over catalysts containing zeolites of various types (Y, ZSM-5, and β) have been studied. Maximum selectivity for light olefins in the cracking of aliphatic and alkylaromatic hydrocarbons was achieved using catalysts with the lowest activity in hydrogen transfer reactions. Based on the cracking of tetraline, it was shown that at temperatures above 625 °C, the kinetic control of the reactions under deep cracking conditions is predominant, whereas at lower temperatures, the selectivity is controlled by thermodynamics. Light olefin selectivity in the case of substituted aromatic and naphthenic hydrocarbons strongly depends on the porous structure of the catalyst. Conversion pathways for different classes of hydrocarbons under deep catalytic cracking conditions are proposed.

深度催化裂化中馏出烃转化制备轻质烯烃的途径
将柴油馏分裂解为轻烯烃的相关性取决于从燃料型炼油厂模式向石化型炼油厂模式转变的战略需要、全球对聚合物需求的增长以及环境可持续性要求。本研究的目的是探索从柴油馏分烃中选择性生产轻烯烃的可能性。本文研究了不同类型(Y、ZSM-5和β)沸石催化剂上模拟柴油馏分组成的单个碳氢化合物高温催化裂化的途径。在氢转移反应中,使用活性最低的催化剂,可实现轻烯烃在脂肪族和烷基芳烃裂化中的最大选择性。以四氯化钠的裂解为基础,研究表明,在625℃以上的温度下,深度裂解条件下的反应以动力学控制为主,而在较低温度下,反应的选择性受热力学控制。在取代芳烃和环烷烃的情况下,轻烯烃的选择性很大程度上取决于催化剂的多孔结构。提出了不同类型烃类在深度催化裂化条件下的转化途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信