Mathematical Modeling of H1-Antihistamines: A QSPR Approach Using Topological Indices

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-10-09 DOI:10.1021/acsomega.5c07577
Merin Manuel,  and , Parthiban Angamuthu*, 
{"title":"Mathematical Modeling of H1-Antihistamines: A QSPR Approach Using Topological Indices","authors":"Merin Manuel,&nbsp; and ,&nbsp;Parthiban Angamuthu*,&nbsp;","doi":"10.1021/acsomega.5c07577","DOIUrl":null,"url":null,"abstract":"<p >Allergic diseases represent a significant global health burden, requiring effective and safe therapeutic agents for long-term management. H1-antihistamines are among the most widely prescribed and over-the-counter drugs for treating allergic conditions, yet their variable physicochemical and pharmacokinetic properties present challenges in optimizing drug selection, safety, and efficacy. A systematic exploration of their structure–property relationships is, therefore, essential for guiding rational drug design. In this study, the Quantitative Structure–Property Relationship (QSPR) of a selection of H1-antihistamines, including both conventional and second-generation compounds, is investigated by using degree-based topological indices and linear regression models. The computed indices are systematically correlated to key physicochemical properties, revealing strong and statistically significant relationships. These findings provide deeper insights into the molecular factors influencing drug behavior and highlight the predictive utility of topological descriptors. Overall, the developed QSPR models not only enhance the understanding of H1-antihistamines but also establish a framework that can accelerate the identification and optimization of next-generation agents with improved pharmacological profiles.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 41","pages":"49019–49034"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c07577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c07577","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Allergic diseases represent a significant global health burden, requiring effective and safe therapeutic agents for long-term management. H1-antihistamines are among the most widely prescribed and over-the-counter drugs for treating allergic conditions, yet their variable physicochemical and pharmacokinetic properties present challenges in optimizing drug selection, safety, and efficacy. A systematic exploration of their structure–property relationships is, therefore, essential for guiding rational drug design. In this study, the Quantitative Structure–Property Relationship (QSPR) of a selection of H1-antihistamines, including both conventional and second-generation compounds, is investigated by using degree-based topological indices and linear regression models. The computed indices are systematically correlated to key physicochemical properties, revealing strong and statistically significant relationships. These findings provide deeper insights into the molecular factors influencing drug behavior and highlight the predictive utility of topological descriptors. Overall, the developed QSPR models not only enhance the understanding of H1-antihistamines but also establish a framework that can accelerate the identification and optimization of next-generation agents with improved pharmacological profiles.

h1 -抗组胺药的数学建模:使用拓扑指数的QSPR方法
过敏性疾病是一个重大的全球健康负担,需要有效和安全的治疗药物进行长期管理。h1 -抗组胺药是治疗过敏性疾病最广泛使用的处方药和非处方药之一,但其多变的物理化学和药代动力学特性在优化药物选择、安全性和有效性方面提出了挑战。因此,系统地探索它们的结构-性质关系对于指导合理的药物设计至关重要。本研究采用基于度的拓扑指数和线性回归模型研究了h1 -抗组胺药的定量构效关系(QSPR),包括传统和第二代化合物。计算的指标与关键的物理化学性质有系统的关联,显示出很强的和统计上显著的关系。这些发现为影响药物行为的分子因素提供了更深入的见解,并突出了拓扑描述符的预测效用。总的来说,所建立的QSPR模型不仅增强了对h1 -抗组胺药的理解,而且还建立了一个框架,可以加速识别和优化具有改进药理学特征的下一代药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信