Integrated Multiomics Elucidates Glutathione Metabolic Regulation in a Marine Aromatic Probiotic Yeast Meyerozyma guilliermondii GXDK6 under Salt Stress

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-10-11 DOI:10.1021/acsomega.5c07376
Zhenze Li, , , Hao Sun, , , Xinglin Chen, , , Pai Peng, , , Huijie Sun, , , Shipeng Chen, , , Muhammad Kashif, , , Ruilin Xie, , , Qi Liang, , , Yujia Luo, , , Tingmei Li, , , Qian Ou, , , Sheng Huang, , and , Chengjian Jiang*, 
{"title":"Integrated Multiomics Elucidates Glutathione Metabolic Regulation in a Marine Aromatic Probiotic Yeast Meyerozyma guilliermondii GXDK6 under Salt Stress","authors":"Zhenze Li,&nbsp;, ,&nbsp;Hao Sun,&nbsp;, ,&nbsp;Xinglin Chen,&nbsp;, ,&nbsp;Pai Peng,&nbsp;, ,&nbsp;Huijie Sun,&nbsp;, ,&nbsp;Shipeng Chen,&nbsp;, ,&nbsp;Muhammad Kashif,&nbsp;, ,&nbsp;Ruilin Xie,&nbsp;, ,&nbsp;Qi Liang,&nbsp;, ,&nbsp;Yujia Luo,&nbsp;, ,&nbsp;Tingmei Li,&nbsp;, ,&nbsp;Qian Ou,&nbsp;, ,&nbsp;Sheng Huang,&nbsp;, and ,&nbsp;Chengjian Jiang*,&nbsp;","doi":"10.1021/acsomega.5c07376","DOIUrl":null,"url":null,"abstract":"<p >High-salt environments impose significant oxidative stress on microorganisms by disrupting redox homeostasis, necessitating efficient adaptive mechanisms such as glutathione (GSH) metabolism. <i>Meyerozyma guilliermondii</i> GXDK6, a marine-derived multistress-tolerant probiotic yeast, exhibits robust salt tolerance; however, the molecular basis of its GSH-mediated regulatory networks under salt stress remains unexplored. In this study, a comprehensive multiomics approach, integrating whole-genome sequencing, transcriptomics, and proteomics profiling, along with targeted physiological assays, was employed to investigate GSH metabolic regulation under salt stress. Genome-wide analysis identified 55 genes involved in other amino acid metabolism, with transcriptomic and proteomic profiling revealing salt-induced upregulation of key GSH biosynthetic genes (<i>GSS</i>, <i>cysK</i>_2, and <i>glyA</i>) and downregulation of degradation-related gene <i>ggt</i>_2. Moreover, transcript and protein level analyses demonstrated the activation of the biosynthetic pathway. Intracellular GSH content exhibited a biphasic response, with a 39.75% reduction at 5% NaCl, followed by a 53.01% increase at 10% NaCl. Glutathione S-transferase enzyme activity was significantly increased under salt stress, highlighting its role in cellular detoxification. Furthermore, exogenous application of GSH (10 mg/L) markedly improved halotolerance, resulting in a 52.7-fold increase in colony-forming units under 10% NaCl conditions. These findings highlight the crucial role of GSH in maintaining redox homeostasis and provide valuable insights for engineering microbial resilience in hypersaline environments.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 41","pages":"48965–48975"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c07376","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c07376","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-salt environments impose significant oxidative stress on microorganisms by disrupting redox homeostasis, necessitating efficient adaptive mechanisms such as glutathione (GSH) metabolism. Meyerozyma guilliermondii GXDK6, a marine-derived multistress-tolerant probiotic yeast, exhibits robust salt tolerance; however, the molecular basis of its GSH-mediated regulatory networks under salt stress remains unexplored. In this study, a comprehensive multiomics approach, integrating whole-genome sequencing, transcriptomics, and proteomics profiling, along with targeted physiological assays, was employed to investigate GSH metabolic regulation under salt stress. Genome-wide analysis identified 55 genes involved in other amino acid metabolism, with transcriptomic and proteomic profiling revealing salt-induced upregulation of key GSH biosynthetic genes (GSS, cysK_2, and glyA) and downregulation of degradation-related gene ggt_2. Moreover, transcript and protein level analyses demonstrated the activation of the biosynthetic pathway. Intracellular GSH content exhibited a biphasic response, with a 39.75% reduction at 5% NaCl, followed by a 53.01% increase at 10% NaCl. Glutathione S-transferase enzyme activity was significantly increased under salt stress, highlighting its role in cellular detoxification. Furthermore, exogenous application of GSH (10 mg/L) markedly improved halotolerance, resulting in a 52.7-fold increase in colony-forming units under 10% NaCl conditions. These findings highlight the crucial role of GSH in maintaining redox homeostasis and provide valuable insights for engineering microbial resilience in hypersaline environments.

综合多组学研究海洋芳香益生菌酵母GXDK6在盐胁迫下的谷胱甘肽代谢调控
高盐环境通过破坏氧化还原稳态对微生物施加显著的氧化应激,需要高效的适应机制,如谷胱甘肽(GSH)代谢。海产耐多逆境益生菌酵母菌GXDK6具有较强的耐盐性;然而,盐胁迫下gsh介导的调控网络的分子基础仍未被探索。在本研究中,采用综合多组学方法,整合全基因组测序、转录组学和蛋白质组学分析,以及靶向生理分析,研究盐胁迫下谷胱甘肽的代谢调节。全基因组分析鉴定了55个参与其他氨基酸代谢的基因,转录组学和蛋白质组学分析显示盐诱导了关键GSH生物合成基因(GSS, cysK_2和glyA)的上调和降解相关基因ggt_2的下调。此外,转录物和蛋白水平分析证实了生物合成途径的激活。细胞内谷胱甘肽含量呈双相反应,在5% NaCl处理下降低39.75%,在10% NaCl处理下增加53.01%。盐胁迫下谷胱甘肽s -转移酶活性显著升高,表明其在细胞解毒中的作用。此外,外源施用谷胱甘肽(10 mg/L)显著提高了耐盐性,在10% NaCl条件下,菌落形成单位增加了52.7倍。这些发现强调了谷胱甘肽在维持氧化还原稳态中的关键作用,并为高盐环境下的工程微生物恢复能力提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信