{"title":"Chiral Two-Dimensional Cu-Pb Bromides: Circularly Polarized Luminescence and Pressure-Enhanced Optical Properties.","authors":"Peiran Xie,Congcong Chen,Pan Wang,Jiawei Lin,Kejun Bu,Tonghuan Fu,Songhao Guo,Hengqian Zhang,Xiao-Wu Lei,Xujie Lü,Lingling Mao","doi":"10.1021/acsnano.5c14764","DOIUrl":null,"url":null,"abstract":"The search for high-performance double perovskite-related materials remains constrained by the limited synthetic accessibility of bimetallic halides compared to their conventional halide double perovskite counterparts, leaving substantial unexplored territory in this domain. A promising structural modification strategy involves the incorporation of chiral organic moieties into the metal halide frameworks, enabling precise engineering of noncentrosymmetric structures toward targeted functional properties. Here, we report a pair of chiral two-dimensional (2D) Cu(I)-Pb bimetallic bromides (R/S-PCA)4Cu2PbBr8·H2O (R/S-CuPbBr, R/S-PCA = R/S-3-piperidinecarboxylic acid) and investigate their behavior under external stimuli including pressure and temperature. The R/S-CuPbBr compounds crystallize in a noncentrosymmetric monoclinic C2 space group, consisting of inorganic bimetal [Cu2PbBr8] layers and organic layers formed via hydrogen bonding interactions. For comparison, another pair of 2D Pb-based bromides (R/S-PCA)3Pb2Br7·H2O (R/S-PbBr) was synthesized, crystallizing in the noncentrosymmetric orthorhombic P212121. These materials exhibit broadband yellow emission and circularly polarized luminescence emission at room temperature. The glum values of R/S-CuPbBr and R/S-PbBr are 8.63 × 10-3 and -7.99 × 10-3, 4.33 × 10-3 and -3.52 × 10-3, respectively. Density functional theory (DFT) calculations reveal R/S-CuPbBr and R/S-PbBr are indirect and direct bandgap semiconductors, respectively. More importantly, R-CuPbBr exhibits dramatic enhancements in optical properties under high pressure, with an 8-fold increase in photoluminescence and 44-fold boost in second-harmonic generation at elevated pressure.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"78 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c14764","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The search for high-performance double perovskite-related materials remains constrained by the limited synthetic accessibility of bimetallic halides compared to their conventional halide double perovskite counterparts, leaving substantial unexplored territory in this domain. A promising structural modification strategy involves the incorporation of chiral organic moieties into the metal halide frameworks, enabling precise engineering of noncentrosymmetric structures toward targeted functional properties. Here, we report a pair of chiral two-dimensional (2D) Cu(I)-Pb bimetallic bromides (R/S-PCA)4Cu2PbBr8·H2O (R/S-CuPbBr, R/S-PCA = R/S-3-piperidinecarboxylic acid) and investigate their behavior under external stimuli including pressure and temperature. The R/S-CuPbBr compounds crystallize in a noncentrosymmetric monoclinic C2 space group, consisting of inorganic bimetal [Cu2PbBr8] layers and organic layers formed via hydrogen bonding interactions. For comparison, another pair of 2D Pb-based bromides (R/S-PCA)3Pb2Br7·H2O (R/S-PbBr) was synthesized, crystallizing in the noncentrosymmetric orthorhombic P212121. These materials exhibit broadband yellow emission and circularly polarized luminescence emission at room temperature. The glum values of R/S-CuPbBr and R/S-PbBr are 8.63 × 10-3 and -7.99 × 10-3, 4.33 × 10-3 and -3.52 × 10-3, respectively. Density functional theory (DFT) calculations reveal R/S-CuPbBr and R/S-PbBr are indirect and direct bandgap semiconductors, respectively. More importantly, R-CuPbBr exhibits dramatic enhancements in optical properties under high pressure, with an 8-fold increase in photoluminescence and 44-fold boost in second-harmonic generation at elevated pressure.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.