Piezo-Nanowired Stem Cells: Ultrasound-Powered Neuronal Commitment for Rapid Neural Circuit Reconstruction after Traumatic Brain Injury.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-20 DOI:10.1021/acsnano.5c08752
Keyi Li,Wenhan Wang,Wenjun Ma,Yiwei Li,Jiahao Zhang,Ailing Yin,Liang Wang,Boyan Li,Qingtong Wang,Gang Li,Hong Liu,Jichuan Qiu
{"title":"Piezo-Nanowired Stem Cells: Ultrasound-Powered Neuronal Commitment for Rapid Neural Circuit Reconstruction after Traumatic Brain Injury.","authors":"Keyi Li,Wenhan Wang,Wenjun Ma,Yiwei Li,Jiahao Zhang,Ailing Yin,Liang Wang,Boyan Li,Qingtong Wang,Gang Li,Hong Liu,Jichuan Qiu","doi":"10.1021/acsnano.5c08752","DOIUrl":null,"url":null,"abstract":"The inherently constrained regenerative capacity of neuronal tissue poses a major obstacle to repairing traumatic brain injury. While neural stem cell transplantation holds promise, its efficacy is constrained by slow and inefficient neuronal differentiation. Here, we engineered piezo-nanowired stem cells by anchoring piezoelectric barium titanate nanowires to neural stem cell membranes, enabling ultrasound-powered piezoelectrical stimulation to drive neuronal differentiation. The high-aspect-ratio barium titanate nanowires stably localize on cell membranes, enabling targeted electrical stimulation to membrane-bound receptors under ultrasound. In vitro, this approach accelerated neuronal differentiation by 5 days, increasing the mature neuron ratio from 14.0% to 30.7%, and enhancing synaptic network complexity. In a traumatic brain injury rat model, barium titanate nanowires combined with ultrasound promoted rapid neural stem cells differentiation into functional neurons, restoring motor and cognitive functions and reconstructing neural networks at the injury site. By integrating wireless piezoelectric stimulation with neural stem cell transplantation, this work provides a promising approach for precise neuromodulation in neurological regeneration.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"1 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c08752","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The inherently constrained regenerative capacity of neuronal tissue poses a major obstacle to repairing traumatic brain injury. While neural stem cell transplantation holds promise, its efficacy is constrained by slow and inefficient neuronal differentiation. Here, we engineered piezo-nanowired stem cells by anchoring piezoelectric barium titanate nanowires to neural stem cell membranes, enabling ultrasound-powered piezoelectrical stimulation to drive neuronal differentiation. The high-aspect-ratio barium titanate nanowires stably localize on cell membranes, enabling targeted electrical stimulation to membrane-bound receptors under ultrasound. In vitro, this approach accelerated neuronal differentiation by 5 days, increasing the mature neuron ratio from 14.0% to 30.7%, and enhancing synaptic network complexity. In a traumatic brain injury rat model, barium titanate nanowires combined with ultrasound promoted rapid neural stem cells differentiation into functional neurons, restoring motor and cognitive functions and reconstructing neural networks at the injury site. By integrating wireless piezoelectric stimulation with neural stem cell transplantation, this work provides a promising approach for precise neuromodulation in neurological regeneration.
压电纳米线干细胞:创伤性脑损伤后快速神经回路重建的超声驱动神经元承诺。
神经组织固有的有限再生能力是创伤性脑损伤修复的主要障碍。虽然神经干细胞移植有希望,但其疗效受到缓慢和低效的神经元分化的限制。在这里,我们通过将压电钛酸钡纳米线锚定在神经干细胞膜上来设计压电纳米线干细胞,使超声驱动的压电刺激能够驱动神经元分化。高纵横比钛酸钡纳米线稳定地定位在细胞膜上,使超声下对膜结合受体的靶向电刺激成为可能。在体外,该方法可使神经元分化加速5天,使成熟神经元比例从14.0%提高到30.7%,并增强突触网络的复杂性。在创伤性脑损伤大鼠模型中,钛酸钡纳米线结合超声促进神经干细胞快速分化为功能性神经元,恢复损伤部位的运动和认知功能,重建神经网络。通过将无线压电刺激与神经干细胞移植相结合,为神经再生中的精确神经调节提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信