A Novel OCTA-Based Image Processing Method for Enhanced Microaneurysm Detection and 3D Visualization in Diabetic Retinopathy.

IF 2.6
Nianjia Wang, Xindi Liu, Jiayi Wu, Xintong Xiang, Yujia Gao, Liang Yao
{"title":"A Novel OCTA-Based Image Processing Method for Enhanced Microaneurysm Detection and 3D Visualization in Diabetic Retinopathy.","authors":"Nianjia Wang, Xindi Liu, Jiayi Wu, Xintong Xiang, Yujia Gao, Liang Yao","doi":"10.1016/j.pdpdt.2025.105258","DOIUrl":null,"url":null,"abstract":"<p><p>The early detection of microaneurysms (MA) in diabetic retinopathy (DR) is crucial for disease management. Although optical coherence tomography angiography (OCTA) offers non-invasive, high-resolution imags, it still suffers from insufficient sensitivity and limitations of two-dimensional imaging in MA's detection. This study proposes an innovative processing method based on retinal OCTA images that integrates blood flow signals with the hyperreflective features of MA in structural OCT, combined with three-dimensional reconstruction technology, to construct a retinal vascular image (3D-MA map) that enhances MA's detection rate and provides 3D visualization. Using the open-source software ImageJ, this method enables visual analysis of the spatial morphology and arteriovenous origin of MAs. The results show that the 3D-MA image preserves three-dimensional stereoscopic effects while enhancing the display of vascular abnormalities, particularly improving the recognition of MAs that are challenging to detect with OCTA alone. This study provides a powerful imaging tool for early diagnosis and mechanistic research of diabetic retinopathy.</p>","PeriodicalId":94170,"journal":{"name":"Photodiagnosis and photodynamic therapy","volume":" ","pages":"105258"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photodiagnosis and photodynamic therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.pdpdt.2025.105258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The early detection of microaneurysms (MA) in diabetic retinopathy (DR) is crucial for disease management. Although optical coherence tomography angiography (OCTA) offers non-invasive, high-resolution imags, it still suffers from insufficient sensitivity and limitations of two-dimensional imaging in MA's detection. This study proposes an innovative processing method based on retinal OCTA images that integrates blood flow signals with the hyperreflective features of MA in structural OCT, combined with three-dimensional reconstruction technology, to construct a retinal vascular image (3D-MA map) that enhances MA's detection rate and provides 3D visualization. Using the open-source software ImageJ, this method enables visual analysis of the spatial morphology and arteriovenous origin of MAs. The results show that the 3D-MA image preserves three-dimensional stereoscopic effects while enhancing the display of vascular abnormalities, particularly improving the recognition of MAs that are challenging to detect with OCTA alone. This study provides a powerful imaging tool for early diagnosis and mechanistic research of diabetic retinopathy.

一种新的基于octa的增强糖尿病视网膜病变微动脉瘤检测和三维可视化的图像处理方法。
糖尿病视网膜病变(DR)的微动脉瘤(MA)的早期发现是疾病治疗的关键。光学相干断层扫描血管造影(OCTA)虽然提供了无创、高分辨率的图像,但在MA的检测中仍然存在灵敏度不足和二维成像的局限性。本研究提出了一种基于视网膜OCTA图像的创新处理方法,将血流信号与MA在结构OCT中的高反射特征相结合,结合三维重建技术,构建视网膜血管图像(3D-MA图),提高MA的检出率,并提供三维可视化。利用开源软件ImageJ,该方法可以可视化分析MAs的空间形态和动静脉起源。结果表明,3D-MA图像保留了三维立体效果,同时增强了血管异常的显示,特别是提高了对单独使用OCTA难以检测的MAs的识别。本研究为糖尿病视网膜病变的早期诊断和发病机制研究提供了有力的影像学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信