Computational neoantigen prediction for cancer immunotherapy.

IF 4.5 3区 医学 Q1 GENETICS & HEREDITY
Lakshman Tejaswi, Poornima Ramesh, Shetty Aditya, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad
{"title":"Computational neoantigen prediction for cancer immunotherapy.","authors":"Lakshman Tejaswi, Poornima Ramesh, Shetty Aditya, Rajesh Raju, Thottethodi Subrahmanya Keshava Prasad","doi":"10.1038/s41435-025-00365-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer represents a significant global health concern, profoundly affecting morbidity and mortality rates worldwide. Due to cancer-associated genetic changes, cancer cells harbor neoantigens (Tumor-Specific Antigens). They are attractive targets for personalized and generalized cancer therapeutics, including cancer vaccines, T cell adoptive therapy, and immunomonitoring. Such antigens can arise at genomic, transcriptomic, and proteomic levels. The host immune system recognizes neoantigens through their presentation on Major Histocompatibility Complexes (MHC), leading to T cell activation and antitumor response, provided sufficient co-stimulatory signals are provided by antigen-presenting cells, including dendritic cells. Computational tools for neoantigen analysis are rapidly advancing, improving prediction accuracy. Bioinformatics tools aid in identifying somatic mutations and selecting neoantigens based on MHC binding and immunogenicity scores. Cost-efficient computational Human Leukocyte Antigen haplotyping uses sequencing data, while proteogenomic strategies, integrating immunopeptidomics, validate neoantigens by detecting peptides naturally presented by tumor cells. Integrating proteome-based validation provides experimental confirmation, strengthening confidence in predictions. Ongoing developments in bioinformatics and multi-omics integration contribute to neoantigen identification, enabling personalized cancer immunotherapies. This review discusses various computational tools/pipelines, their implementation, clinical trials on neoantigenic vaccines, and the limitations/prospects of neoantigen prediction.</p>","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41435-025-00365-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer represents a significant global health concern, profoundly affecting morbidity and mortality rates worldwide. Due to cancer-associated genetic changes, cancer cells harbor neoantigens (Tumor-Specific Antigens). They are attractive targets for personalized and generalized cancer therapeutics, including cancer vaccines, T cell adoptive therapy, and immunomonitoring. Such antigens can arise at genomic, transcriptomic, and proteomic levels. The host immune system recognizes neoantigens through their presentation on Major Histocompatibility Complexes (MHC), leading to T cell activation and antitumor response, provided sufficient co-stimulatory signals are provided by antigen-presenting cells, including dendritic cells. Computational tools for neoantigen analysis are rapidly advancing, improving prediction accuracy. Bioinformatics tools aid in identifying somatic mutations and selecting neoantigens based on MHC binding and immunogenicity scores. Cost-efficient computational Human Leukocyte Antigen haplotyping uses sequencing data, while proteogenomic strategies, integrating immunopeptidomics, validate neoantigens by detecting peptides naturally presented by tumor cells. Integrating proteome-based validation provides experimental confirmation, strengthening confidence in predictions. Ongoing developments in bioinformatics and multi-omics integration contribute to neoantigen identification, enabling personalized cancer immunotherapies. This review discusses various computational tools/pipelines, their implementation, clinical trials on neoantigenic vaccines, and the limitations/prospects of neoantigen prediction.

肿瘤免疫治疗的计算新抗原预测。
癌症是一个重大的全球健康问题,深刻影响着全世界的发病率和死亡率。由于癌症相关的基因变化,癌细胞含有新抗原(肿瘤特异性抗原)。它们是个性化和广泛的癌症治疗的有吸引力的靶点,包括癌症疫苗、T细胞过继治疗和免疫监测。这些抗原可以在基因组、转录组和蛋白质组水平上产生。宿主免疫系统通过主要组织相容性复合体(MHC)的呈递来识别新抗原,从而导致T细胞活化和抗肿瘤反应,前提是抗原呈递细胞(包括树突状细胞)提供足够的共刺激信号。新抗原分析的计算工具正在迅速发展,提高了预测的准确性。生物信息学工具有助于识别体细胞突变和选择基于MHC结合和免疫原性评分的新抗原。成本高效的计算人类白细胞抗原单倍型使用测序数据,而蛋白质基因组学策略,整合免疫肽组学,通过检测肿瘤细胞自然呈现的肽来验证新抗原。整合基于蛋白质组的验证提供了实验确认,增强了预测的信心。生物信息学和多组学整合的持续发展有助于新抗原鉴定,使个性化癌症免疫治疗成为可能。这篇综述讨论了各种计算工具/管道,它们的实现,新抗原疫苗的临床试验,以及新抗原预测的局限性/前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes and immunity
Genes and immunity 医学-免疫学
CiteScore
8.90
自引率
4.00%
发文量
28
审稿时长
6-12 weeks
期刊介绍: Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信