Dr. Mara Pulpito, Dr. Luciana Cicco, Prof. Filippo Maria Perna, Prof. Paola Vitale, Prof. Vito Capriati, Prof. Vicente Gotor-Fernández
{"title":"Merging Iron Catalysis and Enzymatic Reduction: A Deracemization Strategy of Secondary Alcohols in Iron-Based Deep Eutectic Solvents","authors":"Dr. Mara Pulpito, Dr. Luciana Cicco, Prof. Filippo Maria Perna, Prof. Paola Vitale, Prof. Vito Capriati, Prof. Vicente Gotor-Fernández","doi":"10.1002/cctc.202501019","DOIUrl":null,"url":null,"abstract":"<p>The use of deep eutectic solvents (DESs) has gained increasing attention over the past two decades as green (co)solvents for performing organic reactions and biotransformations under mild conditions. In this study, we report a deracemization strategy that highlights the potential of FeCl<sub>3</sub>·6H<sub>2</sub>O/urea (2:1 mol/mol) as a task-specific DES. This neoteric solvent not only enhances substrate solubility but also plays a crucial role in the oxidation step of various racemic alcohols. The chemoenzymatic process consists of two consecutive sequential redox steps, starting with an initial non-selective oxidation of the hydroxyl group using TEMPO in the FeCl<sub>3</sub>·6H<sub>2</sub>O/urea medium, followed by a stereoselective bioreduction of the resulting carbonyl intermediate. Notably, the use of stereocomplementary alcohol dehydrogenases (ADHs)—namely ADH-A (Prelog selectivity), <i>Lb</i>ADH, and evo 1.1.200 (anti-Prelog selectivity)—is shown to be compatible with the DES system, enabling the efficient conversion of racemic alcohols into enantiomerically enriched products. Enantiomeric excesses of up to >99% were achieved, demonstrating the effectiveness of this DES-based chemoenzymatic platform in producing optically active alcohols from racemic mixtures.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 20","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202501019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202501019","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of deep eutectic solvents (DESs) has gained increasing attention over the past two decades as green (co)solvents for performing organic reactions and biotransformations under mild conditions. In this study, we report a deracemization strategy that highlights the potential of FeCl3·6H2O/urea (2:1 mol/mol) as a task-specific DES. This neoteric solvent not only enhances substrate solubility but also plays a crucial role in the oxidation step of various racemic alcohols. The chemoenzymatic process consists of two consecutive sequential redox steps, starting with an initial non-selective oxidation of the hydroxyl group using TEMPO in the FeCl3·6H2O/urea medium, followed by a stereoselective bioreduction of the resulting carbonyl intermediate. Notably, the use of stereocomplementary alcohol dehydrogenases (ADHs)—namely ADH-A (Prelog selectivity), LbADH, and evo 1.1.200 (anti-Prelog selectivity)—is shown to be compatible with the DES system, enabling the efficient conversion of racemic alcohols into enantiomerically enriched products. Enantiomeric excesses of up to >99% were achieved, demonstrating the effectiveness of this DES-based chemoenzymatic platform in producing optically active alcohols from racemic mixtures.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.