Photosynthetic Biomimetic System: Nickel Phthalocyanine and Biomass-Derived Carbon Quantum Dots for Enhanced Water Oxidation

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-08-27 DOI:10.1002/cctc.202401691
Gabriel C. da Fonseca, Fhysmélia F. de Albuquerque, Rafael N. P. Colombo, Rodrigo M. Iost, Frank N. Crespilho, João C. P. de Souza
{"title":"Photosynthetic Biomimetic System: Nickel Phthalocyanine and Biomass-Derived Carbon Quantum Dots for Enhanced Water Oxidation","authors":"Gabriel C. da Fonseca,&nbsp;Fhysmélia F. de Albuquerque,&nbsp;Rafael N. P. Colombo,&nbsp;Rodrigo M. Iost,&nbsp;Frank N. Crespilho,&nbsp;João C. P. de Souza","doi":"10.1002/cctc.202401691","DOIUrl":null,"url":null,"abstract":"<p>Efficient water oxidation is a crucial challenge for artificial photosynthesis and solar energy conversion. Here, we introduce a biomimetic photosynthetic system that combines Nickel(II) phthalocyanine-tetrasulfonic acid (NiPc) with carbon quantum dots (CQDs) derived from sugarcane biomass to enhance photoelectrochemical water oxidation. The CQDs effectively absorb UV and visible light, aiding electron transfer to NiPc, which significantly boosts photocurrent generation and reduces the overpotential. Electrochemical tests, including cyclic voltammetry and chronoamperometry under UV and blue light, show that the NiPc/CQD hybrid system delivers a notable increase in photocurrent density and stability compared to bare NiPc electrodes. By a membrane-free Clark-type electrode, molecular oxygen generated during photoelectrochemical water oxidation was detected. This sustainable system underscores the potential of biomass-derived CQDs as efficient, low-cost nanomaterials for solar-driven water oxidation, advancing renewable energy technologies.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 20","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202401691","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202401691","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient water oxidation is a crucial challenge for artificial photosynthesis and solar energy conversion. Here, we introduce a biomimetic photosynthetic system that combines Nickel(II) phthalocyanine-tetrasulfonic acid (NiPc) with carbon quantum dots (CQDs) derived from sugarcane biomass to enhance photoelectrochemical water oxidation. The CQDs effectively absorb UV and visible light, aiding electron transfer to NiPc, which significantly boosts photocurrent generation and reduces the overpotential. Electrochemical tests, including cyclic voltammetry and chronoamperometry under UV and blue light, show that the NiPc/CQD hybrid system delivers a notable increase in photocurrent density and stability compared to bare NiPc electrodes. By a membrane-free Clark-type electrode, molecular oxygen generated during photoelectrochemical water oxidation was detected. This sustainable system underscores the potential of biomass-derived CQDs as efficient, low-cost nanomaterials for solar-driven water oxidation, advancing renewable energy technologies.

Abstract Image

光合仿生系统:镍酞菁和生物质衍生碳量子点增强水氧化
高效的水氧化是人工光合作用和太阳能转换的关键挑战。在此,我们介绍了一种仿生光合系统,该系统将镍(II)酞菁四磺酸(NiPc)与来自甘蔗生物质的碳量子点(CQDs)结合,以增强光电化学水氧化。cqd有效地吸收紫外线和可见光,帮助电子转移到NiPc,从而显着促进光电流的产生并降低过电位。紫外和蓝光下的循环伏安法和计时安培法等电化学测试表明,与裸露的NiPc电极相比,NiPc/CQD混合体系的光电流密度和稳定性显著提高。采用无膜clark型电极,对电化学水氧化过程中产生的分子氧进行了检测。这个可持续的系统强调了生物质衍生的CQDs作为太阳能驱动水氧化的高效、低成本纳米材料的潜力,推动了可再生能源技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信